CONGRUENT ZETA FUNCTIONS. NO.4

YOSHIFUMI TSUCHIMOTO

4.1. First properties of congruent Zeta function. Let us first recall an elementary formula

Lemma 4.1.

$$\sum_{k=1}^{\infty} \frac{1}{k} T^k = -\log(1-T)$$

DEFINITION 4.2. We denote by \mathbb{A}_n the "void set of equation" in *n*-variables. That means, for any field (or ring) k, we put

$$\mathbb{A}_n(k) = \{ x \in k^n \}.$$

Proposition 4.3.

$$Z(\mathbb{A}_n/\mathbb{F}_q, T) = \frac{1}{1 - q^n T}$$

PROPOSITION 4.4. Let V, W, W_1, W_2 be sets of equations.

(1) If $\#V(\mathbb{F}_{q^s}) = \#W(\mathbb{F}_{q^s})$ for any s, then $Z(V/\mathbb{F}_q, T) = Z(W/\mathbb{F}_q, T)$. (2) If $\#V(\mathbb{F}_{q^s}) = \#W_1(\mathbb{F}_{q^s}) + \#W_2(\mathbb{F}_{q^s})$ for any s, then: $Z(V/\mathbb{F}_q, T) = Z(W_1/\mathbb{F}_q, T)Z(W_2/\mathbb{F}_q, T)$.

PROPOSITION 4.5. Let $f \in \mathbb{F}_q[X]$ be an irreducible polynomial in one variable of degree d. Let us consider $V = \{f\}$, an equation in one variable. Then:

(1)

$$V(\mathbb{F}_{q^s}) = \begin{cases} d & \text{if } d | s \\ 0 & \text{otherwise} \end{cases}$$

(2)

$$Z(V/\mathbb{F}_q, T) = \frac{1}{1 - T^d}$$

EXERCISE 4.1. Describe what happens when we omit the assumption of f being irreducible in Proposition 4.5.