
TOPICS IN NON COMMUTATIVE ALGEBRAIC
GEOMETRY AND CONGRUENT ZETA FUNCTIONS

(PART VI). LIE ALGEBRAS AND THEIR
ENVELOPING ALGEBRAS
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1. Lie algebras

Definition 1.1. Let K be a commutative ring. Then a Lie alge-
bra g over K is a K-module with a bilinear (non associative) bracket
product (“Lie bracket”)

[•, •] : g × g → g

which satisfies the following axioms:

(1) [X,X] = 0 for all X ∈ g.
(2) (“Jacobi identity”)

[X, [Y, Z]] = [[X, Y ], Z]] + [Y, [X,Z]] (∀X, Y, Z ∈ g).

Example 1.2. Any associative algebra A over k may be regarded as
a Lie algebra with the “commutator” as a Lie bracket.

In this talk, we always regard associative algebra as a Lie algebra
equipped with the commutator product unless otherwise specified.

Lemma 1.3. Let g be a Lie algebra over a ring k. Then there exists
an associative unital algebra U(g) with a Lie algebra homomorphism

ιg : g → U(g)

with the following universal property:
For any associative unital algebra A with a Lie algebra homomor-

phism φ : g → A, there exists a unique algebra homomorphism

ψ : U(g) → A

such that ψ ◦ ιg = φ holds.
The pair (U(g), ιg) is unique up to an isomorphism.

Definition 1.4. Under the assumption of the previous Lemma, The
pair (U(g), ιg) is called the universal enveloping algebra the Lie
algebra g.
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Universal enveloping algebras of Lie algebras form an important class
of non commutative associative algebras. Our task in this Part is to
describe these algebras in our language.

2. Representations of a Lie algebra

Definition 2.1. Let k be a field. A finite dimensional representation
of a Lie algebra g over k is a Lie algebra homomorphism

ρ : g →Mn(k).

Note: The full matrix algebra Mn(k), when regarded as a Lie alge-
bra equipped with the commutator product, is commonly denoted as
gln(k).

Example 2.2. Let k be a field. Let g be a finite dimensional Lie
algebra over k. We then have an adjoint representation

g 3 X 7→ ad(X) = (Y 7→ [X, Y ]) ∈ Endk−linear(g).

3. Poincaré-Birkoff-Witt Theorem

In this section we prove the Poincaré-Birkoff-Witt Theorem. The
treatment here essentially follows [1]. Let g be a Lie algebra over a field
k. To prove the theorem we consider Sk(g), the symmetric algebra of
g over k. Let us denote the multiplication of Sk(g) by (x, y) 7→ x ◦ y.
We note that each element x of Sk(g) has its degree deg(x). (as a
polynomial in elements of g.)

Lemma 3.1. We choose a ordered basis (xλ;λ ∈ Ω). (That means,
a basis with a totally ordered index set Ω.) Then there exists a linear
action of g on Sk(g) which obeys the following rules:

(1) For any x ∈ g and for any y ∈ Sk(g),

deg(x.y − x ◦ y) ≤ deg(y)

(2) If λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn, then we have

xλ0 .(xλ1 ◦ xλ2 ◦ xλ3 ◦ · · · ◦ xλn
) = xλ0 ◦ xλ1 ◦ xλ2 ◦ xλ3 ◦ · · · ◦ xλn

.

(3) For any x, y ∈ g and for any z ∈ Sk(g), we have

x.(y.z) − y.(x.z) = [x, y].z

The proof is done by a careful use of induction. Namely,

Sublemma 3.2. We employ the same assumption of the above Lemma.
Then for each m ∈ Z>0, there exists a unique k-bilinear map

fm : g × Sk(g)≤m → Sk(g)≤m+1

which obeys the following rules:
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(1) For any x ∈ g and for any y ∈ Sk(g)≤m,

deg(fm(x, y) − x ◦ y) ≤ deg(y)

(2) If λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn and n ≤ m, then we have

fm(xλ0 , xλ1 ◦ xλ2 ◦ xλ3 ◦ · · · ◦ xλn
) = xλ0 ◦ xλ1 ◦ xλ2 ◦ xλ3 ◦ · · · ◦ xλn

.

(3) For any x, y ∈ g and for any z ∈ Sk(g)≤m−1, we have

fm(x, fm(y, z)) = fm(y, fm(x, z)) + fm([x, y], z)

Proof. We note first that Sk(g) has the set of monomials

{xλ1 ◦ xλ2 ◦ xλ3 ◦ · · · ◦ xλn
;λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn}

as a k-basis. For monomial w = xλ1 ◦ xλ2 ◦ xλ3 ◦ · · · ◦ xλn
such that

λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn, we put z = λ2 ≤ λ3 ≤ · · · ≤ λn. Then

w = fm−1(xλ1 , z).

We define inductively the action of xλ0 on it by the following equations.

fm(xλ0 , xλ1◦z) =



















xλ0 ◦ xλ1 ◦ z (if λ0 ≤ λ1)




xλ1 ◦ xλ0 ◦ z

+ fm−1(xλ1 , fm−1(xλ0 , z) − xλ0 ◦ z)

+ fm−1([xλ0 , xλ1 ], z)



 (if λ0 > λ1)

We first note that the above definition is necessary to meet our con-
ditions. Indeed, by (2) we necessarily define as above for λ0 ≤ λ1.
When λ0 > λ1, we compute

xλ0 .(xλ1 ◦ z)

(3)
=xλ1 .xλ0 .z + [xλ0 , xλ1 ].z

=xλ1 .(xλ0 .z − xλ0 ◦ z) + xλ1 .(xλ0 ◦ z) + [xλ0 , xλ1 ].z

(2)
=xλ1 .(xλ0 .z − xλ0 ◦ z) + xλ1 ◦ xλ0 ◦ z + [xλ0 , xλ1 ].z

and take a careful look at degrees of each monomials using (1). From
this argument we see in particular that the action is uniquely deter-
mined by conditions (1),(2),(3).

It is easy to see that the conditions (1),(2) are satisfied by fm defined
as above.. Let us proceed to verify that the fm so defined also satisfies
(3). Let us consider xλ, xµ z = xµ1 ◦ xµ2 ◦ · · · ◦ xµn

with µ1 ≤ µ2 ≤
· · · ≤ µn, n ≤ m− 1. We need to prove

([) xλ.xµ.z − xµ.xλ.z = [xλ, xµ].z.

Since the equation above is antisymmetric in µ, ν, we may assume that
λ ≤ µ.
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(i) Case where λ ≤ µ1.

xλ.xµ.z

=xλ.(xµ ◦ z) + xλ.(xµ.z − xµ ◦ z)

(1)
=xλ ◦ xµ ◦ z + xλ.(xµ.z − xµ ◦ z)

In other words,

fm(xλ, fm(xµ, z)) = xλ ◦ xµ ◦ z + fm−1(xλ, (fm−1(xλ, z) − xµ ◦ z)).

On the other hand we have

xµ.xλ.z

=xµ.(xλ ◦ z)

by def
= xλ ◦ xµ ◦ z + fm−1(xλ, fm−1(xµ, z) − xµ ◦ z) + fm−1([xµ, xλ], z)

So the equation [ surely holds in this case.
(ii) Case where λ, µ > µ1.

In this case we need to “decompose” z further:

z = xν.w.

We first forget about the hypothesis λ ≤ µ and prove

xλ.(xµ.(xν .w)) (♥)

=xν .(xλ.(xµ.w)) + [xλ, xν].(xµ.w) + [xµ, xν ].(xλ.w) + [xλ, [xµ, xν]].w

(Since we are doing induction, we need to pay a special attention on
degrees on operands. That means, we should use fm’s rather than the
above “lazy” notation. But that is fairly cumbersome, so we keep on
being lazy here.)

Let us now admit that the above equation ♥ is true and prove the
rest of the equation (3). By interchanging λ and µ in the equation (♥),
we obtain

xµ.(xλ.(xν .w)) (♦)

=xν .(xµ.(xλ.w)) + [xµ, xν ].(xλ.w) + [xλ, xν].(xµ.w) + [xµ, [xλ, xν]].w

Then by subtracting (♦) from (♥), we obtain

xλ.(xµ.(xν .w)) − xµ.(xλ.(xν .w))

=xν.(xλ.(xµ.w) − xµ.(xλ.w))

+ ([xλ, [xµ, xν ]] − [xµ, [xλ, xν ]]).w.
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Since deg(w) is smaller than deg(z), by induction hypothesis the first
term in the right hand side may be replaced by xν .([xλ, xµ].w). The
second term may be replaced, by the Jacobian identity, by [[xλ, xµ], xν].
So the equation ([) holds in this case too.

It remains to prove the equation (♥). By the induction hypothesis
we have

xµ.(xν.w) = xν .(xµ.w) + [xµ, xν ].w.

Also by the induction hypothesis we have

xλ.([xµ, xν].w) = [xµ, xν ].(xλ.w) + [xλ, [xµ, xν]].w

Lastly, we decompose xµ.w as

xµ.w = (xµ ◦ w) + (xµ.w − xµ ◦ w). = (xµ ◦ w) + y

Then the second term y has degree smaller than deg(z) = deg(w) + 1.
The case (i) applies to the first term and we obtain:

xλ.(xν.(xµ.w)) = xν .(xλ.(xµ.w)) + [xλ, xν].(xµ.w).

These altogether complete the proof. �

Theorem 3.3 (Poincaré, Birkoff, Witt(PBW)). Let g be a Lie alge-
bra over a field k. Then we have a k-algebra isomorphism

Ψ : Gr(U(g)) ∼= S(g).

Proof. Let
ι0 : g → Gr(U(g))

be the obvious k-linear map.
Using the universality of symmetric algebra, there exists a unique

k-algebra homomorphism

Φ : S(g) → Gr(U(g))

which extends ι0. On the other hand the action defined in the Lemma
1.3 gives us a linear map

Ψ0 : U(g) 3 x 7→ x.1 ∈ S(g)

which is clearly degree-decreasing. So it defines a k-linear map

Ψ : Gr(U(g)) → Gr(S(g)) ∼= S(g).

Now the composition we obtain

Ψ ◦ Φ : S(g)
Φ
→ Gr(U(g))

Ψ
→ S(g)

coincides with the identity map. Indeed, it coincides with the identity
on monomials of the form

xλ1 ◦ xλ2 ◦ xλ3 ◦ · · · ◦ xλn−1 ◦ xλn
.
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The map Φ is easily verified to be surjective. So we conclude that Φ
and Ψ are both bijective and are inverse to each other. �

4. Jordan-Chevalley decomposition of a square matrix

4.1. Existence and uniqueness of Jordan-Chevalley decompo-
sition.

Definition 4.1. Let A be a square matrix over a field k. A Jordan-
Chevalley decomposition (also called SN-decomposition) of A is a
decomposition of A

A = S +N

which satisfies the following conditions.

(1) S is semisimple (that means, the minimal polynomial of S has
only simple roots.)

(2) N is nilpotent.
(3) SN = NS
(4) S,N ∈ k[A]

A main objective of this section is to prove the following proposition.

Proposition 4.2. For any square matrix A over a field k, there
exists a unique Jordan-Chevalley decomposition.

To prove it, we need some basic facts from linear algebra.

Lemma 4.3. Let A be a square matrix over a field k. Let mA(X)
be the minimal polynomial of A over k. If mA is decomposed into two
coprime polynomials, that means,

mA = m1m2 (m1, m2) = 1,

then A is similar to a direct sum

A1 ⊕ A2 =

(

A1 0
0 A2

)

where m1(A1) = 0, m2(A2) = 0.

Proof. Since k[X] is an Euclidean domain, it is a principal ideal
domain. thus we see that there exists a polynomial l1(X), l2(X) ∈ k[X]
such that

l1(X)m1(X) + l2(X)m2(X) = 1

holds. We put
Ej = lj(A)mj(A) (j = 1, 2).

Then we see easily that E1, E2 are mutually orthogonal projection.
That means, we have

E2
1 = E1, E

2
2 = E2, E1 + E2 = 1, E1E2 = 0.
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It is also easy to see that both E1 and E2 commute with A. Now
putting A1 = A|Range E2 and A2 = A|Range E1 we see that

A = AE2 + AE1 = A1 ⊕ A2.

with A1 and A2 satisfying the required property. �

Corollary 4.4. Every square matrix A over a field k is similar
to a direct sum of square matrices A1, A2, . . . , As with each minimal
polynomial mAj

equals to a power f
ej

j of a irreducible polynomial fj

over k.

�

Corollary 4.5. When k is algebraically closed, every square ma-
trix A over a field k is similar to a direct sum of square matrices
A1, A2, . . . , As with each minimal polynomial mAj

equals to a power
(X − cj)

ej of a polynomial of degree 1 over k.

�

Corollary 4.6. A square matrix over a field k is semisimple if and
only if it is diagonalizable (similar to a diagonal matrix) over k.

�

Corollary 4.7. Let S1, S2 be semisimple square matrices of the
same size over k. if S1 and S2 commute, then both S1 + S2 and S1S2

are also semisimple.

Proof. Using commutativity of S1 and S2, we may easily see that
S1 and S2 are simultaneously diagonalizable over k. �

Corollary 4.8. Let k be a field. Let C be a commutative subalgebra
of Mn(k). If C is generated by semisimple elements, then every element
of C is also semisimple.

�

On the other hand we have

Lemma 4.9. Let k be a field. Let C be a commutative subalgebra of
Mn(k). If C is generated by nilpotent elements, then every element of
C is also nilpotent.

Proof. Easy. �

Corollary 4.10. A Jordan-Chevalley decomposition (if there ex-
ists) of a square matrix A is unique.
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Proof. Let

A = S +N = S ′ +N ′

be two Jordan-Chevalley decompositions. Then S − S ′ = N ′ −N is a
semisimple nilpotent element. Thus S − S ′ = N ′ −N = 0. �

Proof. (of Proposition 4.2.) It now remains to prove that Jordan-
Chevalley decomposition of a square matrix exists. By definition we
may assume that k is algebraically closed. In view of Corollary 4.5, we
may then assume that the minimal polynomial mA of A is of the form
(X − c)e for some c ∈ k and e ∈ Z>0. Then

A = c+ (A− c)

gives the required Jordan-Chevalley decomposition.
�

Definition 4.11. Let k be a field. For any square matrix x ∈
Mn(k), we denote by xs (respectively, xn) the semisimple (respectively,
nilpotent) part of x in the Jordan-Chevalley decomposition of x.

Lemma 4.12. Let k be a field. Let x ∈ Mn(k) be a square matrix.
then we have

(ad(x))s = ad(xs), (ad(x))n = ad(xn)

Proof. Follows easily from the uniqueness of the Jordan-Chevalley
decomposition. �

4.2. k-rationality.

Proposition 4.13. Let A be a square matrix over a field k. Let

A = S +N

be the Jordan-Chevalley decomposition of A.
Let mA be the minimal polynomial of A. If all of the roots of mA are

separable over k, then S and N are defined over k. (That means, they
are matrices over k).

Proof. In view of Corollary , we may assume that mA is of the
form f e for some irreducible polynomial f and a positive integer e. By
assumption, f has only simple roots.

f(X) =

d
∏

j=1

(X − cj)
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Let us define a polynomial χs(X) ∈ k[X] as follows.

χs(X) =

∏

1≤j≤d
j 6=s

(X − cj)
∏

1≤j≤d
j 6=s

(cs − cj)
(s = 1, 2, 3, . . . , d)

These polynomials are designed to satisfy the following property.

χs(cj) =

{

1 if j = s

0 if j 6= s

Then we further define

φ(e)
s (X) = 1 − (1 − χe

s)
e

and

ψ(X) =
d
∑

s=1

csφ
(e)
s (X).

It is fairly easy to see that

S = ψ(A)

holds.
The function ψ is symmetric with respect to roots {cs} and thus ψ

is a polynomial with coefficients in k. Thus S (hence also N) is defined
over k.

�

The following example shows that the k-rationality of S does not
necessarily hold when we drop off the assumption on A.

Example 4.14. Let A ∈ Mp(Fp(x)) be a matrix of the following
form.

A =











0 1
. . .

. . .

. . . 1
x 0











Then the minimal polynomial of A is given by Xp − x. The Jordan-
Chevalley decomposition of A is given by

A = x1/p + (A− x1/p).

Thus the decomposition is not defined over Fp(x).
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5. generalities in finite dimensional Lie algebras

5.1. Ideals of Lie algebras.

Definition 5.1. For a linear subspace S, T of a Lie algebra L, let
us define denote by [S, T ] the following linear subspace of L.

(1)
[S, T ] = (linear span of {[x, y]; x ∈ S, y ∈ T})

Definition 5.2. Let L be a Lie algebra over a field k. A k-linear
subspace a of L is said to be an ideal of L if

[x, y] ∈ a (∀x ∈ L, ∀y ∈ a)

holds. This clearly is equivalent to saying that

[L, a] ⊂ L

holds.

Proposition 5.3. Let a be an ideal of a Lie algebra L. Then

(1) a is a sub L-module (sub representation) of L.
(2) L/a caries a natural structure of a Lie algebra.

Proof. As usual. �

5.2. Simple, semisimple, solvable, and nilpotent Lie algebras:
definition.

Definition 5.4. For a Lie algebra L, let us define the following
ideals of L.

(1) Comm(L) = [L, L], and inductively,

Commj(L) = Comm(Commj−1(L)).

(2) ad(L)(L) = [L, L], and inductively,

adj(L)(L) = ad(adj−1(L)).

Lemma 5.5. For any Lie algebra L and for any positive integer j,
we have

Commj(L) ⊂ adj(L).

Proof. Inductively, we have

Commj(L) = [Commj−1(L),Commj−1(L)] ⊂ [L, adj−1(L)] = adj(L).

�

Definition 5.6. A Lie algebra L over a field k is said to be

(1) semisimple if it has no abelian ideals.
(2) simple if it has no non trivial ideals and dim(L) > 1.
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(3) solvable if CommN(L) = 0 for some N ∈ Z>0.
(4) nilpotent if ad(L)N (L) = 0 for some N ∈ Z>0.

Proposition 5.7. We have the following implications.

(1) Simple Lie algebras are semisimple.
(2) Nilpotent Lie algebras are solvable.

Proof. (1)is Easy. (2) follows from Lemma 5.5. �

Semisimple algebras and solvable ones are “orthogonal”. For now we
only mention the following

Lemma 5.8. Non zero solvable algebra L cannot be semisimple.

Proof. Let N0 be a positive integer such that

CommN
0 (L) 6= 0, CommN0+1(L) = 0.

Then CommN0(L) is a non-zero abelian ideal of L. �

5.3. The radicals of Lie algebras.

Definition 5.9. A radical of a Lie algebra L is a maximal solvable
ideal of L.

Lemma 5.10. Let a be an ideal of a Lie algebra L. If L/a and a are
both solvable Lie algebras, then L is also solvable.

Proof. Since L/a is solvable, there exists a positive integer N1 such
that

CommN1(L/a) = 0.

Then we obviously have

CommN1(L) ⊂ a.

On the other hand, since a is solvable, there exists a positive integer
N2 such that

CommN2(a) = 0.

We thus have

CommN1+N2(L) = CommN2(CommN1(L)) ⊂ CommN2(a) = 0.

�

Lemma 5.11. Every Lie subalgebras and quotients of solvable Lie
algebras are solvable.

Proof. Obvious. �

Lemma 5.12. Let a, b be ideals of a Lie algebra L. If a, b are both
solvable (as Lie algebras), then a + b is also solvable.
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Proof.

a + b/b ∼= a/a ∩ b

�

Proposition 5.13. For a finite dimensional Lie algebra L over a
field k, there exists a unique maximal solvable ideal of L. So we may
call it the radical of L.

Proof. Let a0 be a solvable ideal of L which has the maximal di-
mension among solvable ideals. Then for any solvable ideal b of L,
a0 + b is also solvable. Thus by the choice of a0 we see that

a0 + b = a0. (That is, a0 ⊃ b.)

Thus we see that a0 is the largest solvable ideal of L.
�

Corollary 5.14. Let L be a finite dimensional Lie algebra over a
field k. Let r be its radical. Then:

(1) L/r is semisimple.
(2) L is semisimple if and only if r = 0.
(3) A quotient L/a is semisimple if and only if r ⊂ a.

Proof. (1) follows immediately from the definition and Lemma 5.8.
(2) is also easy.
(3): L/a contains

(r + a)/a(∼= r/(r ∩ a))

as a solvable ideal. �

5.4. Theorem of Engel.

Lemma 5.15. Let k be a commutative ring. Let x ∈ Mn(k) be a
nilpotent matrix. Then ad(x) is also nilpotent.

Proof. Assume xN = 0. We decompose ad(x) into left and right
multiplication. Namely,

ad(x) = λ(x) − ρ(x)

Then λ(x) and ρ(x) commute with each other.

ad(x)2N−1 =
2N−1
∑

j=0

λ(x)j(−ρ(x))2N−1−j =
2N−1
∑

j=0

λ(xj)ρ((−x)2N−1−j) = 0.

�

Theorem 5.16 (Engel). Let V be a finite dimensional vector space
over a field k. Let L be a Lie subalgebra of gl(V ) such that each member
of L is a nilpotent matrix. Then:
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(1) If dim(L) ≥ 1, then L has an ideal of codimension 1.
(2) If dim(V ) ≥ 1, then L has a simultaneous 0-eigen vector v.

(That is, x.v = 0 (∀x ∈ L), v 6= 0.)

Proof. If dim(L) = 0, then there is nothing to do. We proceed by
induction on dim(L). Let L1 be a maximal among

{(Lie subalgebras of L which is not equal to L)}.

(The set above has a {0} as a member, so it is not empty.) In view of
the lemma above, we see

∀x ∈ L1∃N ∈ Z>0(ad(x)N(L) = 0).

We note that an vector space L/L1 admits adjoint actions by L1. Thus

∀x ∈ L1∃N ∈ Z>0(ad(x)N(L/L1) = 0).

That means, adL/L1(L1) ⊂ gl(L/L1) also satisfy the assumption of the
theorem. By the induction hypothesis, we see that conclusion (2) is
applicable to this case. Namely, there exists an element y0 ∈ L \ L1

such that

ad(x)(y0)(= [x, y0]) ∈ L1 (∀x ∈ L1)

holds. Now a vector subset

L2 = k.y0 + L1() L1)

of L is closed under Lie bracket and therefore it is a Lie subalgebra of
L. By the maximality of L1, L2 should equal to L. It is then also easy
to verify that L1 is an ideal of L(= L2). This proves (1).

To prove (2), we note that (L1, V ) satisfies the assumption of the
theorem. So again by induction we see that L1 has a simultaneous
0-eigen vector. In other words,

V1 :=
⋂

x∈L1

{v ∈ V ; x.v = 0} ) {0}.

Let us then consider the action of y0.

v ∈ V1 =⇒ x.(y0.v) = y0.(x.v) + [x, y0].v = 0 =⇒ y0.v ∈ V1

Thus V1 admits an action of y0. Since y0 is nilpotent on V by the
assumption, we see that y0 has at least one 0-eigen vector v0(6= 0) in
V1. Then v0 surely is a simultaneous 0-eigen vector of L.

�

Theorem 5.17 (Engel). Let V be a finite dimensional vector space
over a field k. Let L be a Lie subalgebra of gl(V ) such that each member
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of L is a nilpotent matrix. Then there exists a basis e1, e2, . . . , en of V
such that

L ⊂ nn(k) =



































0 ∗ ∗ . . . ∗
0 0 ∗ . . . ∗

. . . ∗ ∗
0 0 . . . 0 ∗
0 0 . . . 0 0



































holds with respect to this basis. In particular, L is nilpotent.

Proof. We apply the above theorem inductively to a vector space

L, L/(k.e1), L/(k.e1 + k.e2) . . .

and obtain the desired basis {ei}. Since the Lie algebra nn(k) is nilpo-
tent, L is also nilpotent.

�

5.5. Ideals of gln(k). Recall that nn(k) denotes the Lie algebra of
strictly upper triangular matrices. In this subsection we denote by eij

the elementary matrices. (as we have done so without even mention-
ing...)

Lemma 5.18. Let k be a field of characteristic p (possibly 0). Let
n ∈ Z>1. We assume that (p, n) 6= (2, 2). Then we have

{x ∈ gln(k); [x, y] ∈ k.1n (∀y ∈ nn(k))} = k.1n + k.e1n.

Proof. Let us denote by L the left hand side of the lemma. Then
we trivially have L ⊃ k.1n. Furthermore, for all x ∈ nn(k), we see
easily that

xe1n = 0, e1nx = 0

holds. So we have

L ⊃ k.1n + k.e1n

Let us prove the opposite inclusion. We take an arbitrary element
x ∈ L.

For any (i, j) satisfying i < j, we have eij ∈ nn(k) and thus

[ei,j, x] = c1n (∃c ∈ k).

The rank of the left hand side is at most 2. So c must be equal to 0
when n ≥ 3. Otherwise (n = 2), we compare the trace of the both
hand sides. The trace of the left hand side is clearly zero. The trace
of a scalar matrix c.12 is equal to 2c. Thus c = 0 by our assumption
((p, n) 6= (2, 2)). In either case, we have [ei,j, x] = 0. Then we compute
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some of special cases. First, let us examine the case where i = 1, j ≥ 2.
Then

0 = [e1j , x] =
∑

st

[e1j , xstest] =
∑

t

xjte1t −
∑

s

xs1esj

By looking at (1, u) entry of the above equation, we conclude that
equations in entries

∀j∀u((j ≥ 2, j 6= u) =⇒ xju = 0)

∀j((j ≥ 2) =⇒ xjj = x11)

hold. Similarly, by looking at the (u, n) entry of [ein, x], we conclude
that equations

∀i∀u((i ≤ n− 1, i 6= u) =⇒ xui = 0)

hold. Putting the equations all together, we conclude that x is in the
right hand side of the lemma. �

As an application of the Engel’s theorem, we prove the following
proposition.

Proposition 5.19. Let k be a field of characteristic p (possibly 0).
Let n be a positive integer. We assume that (p, n) 6= (2, 2). Then each
ideal I of gln(k) is equal to the one in the following list.

(1) 0.
(2) k.1n.
(3) sln(k).
(4) gln(k).

Proof. The case n = 1 is trivial. So let us assume n ≥ 2.
If I ⊂ k.1n, then dimk(I) ≤ 1 and hence I = 0 or I = k.1n. Assume

now I 6⊂ k.1n. Let us consider the Lie algebra nn(k) of strictly upper
triangular matrices. Then

(L, V ) = (nn(k), (I + k.1n)/k.1n)

satisfies the assumption of the Engel’s theorem. So there exists a non-
constant element x ∈ I such that

[x, y] ∈ k.1n (∀y ∈ nn(k)).

holds. By using the previous lemma, we see that x may be presented
as

x = c01n + c1e1n (∃c0, c1 ∈ k).

Since x is non-constant, we have c1 6= 0.

I 3 [e11, x] = c1e1n
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Thus e1n belongs to I. By changing the order of the base and repeating
the above argument, we conclude that

∀i∀j((i 6= j) =⇒ eij ∈ I.)

In addition we have

I 3 [eij, eji] = eii − ejj

This clearly proves I ⊃ sln(k). Since the codimension of sln(k) in
gln(k) is 1, we have either I = sln(k) or I = gln(k).

�

For the sake of completeness, we deal with the case (p, n) = (2, 2).
In this case, situation is a bit different.

Lemma 5.20. Let k be a field of characteristic 2. Then:

(1) Any two-dimensional vector subspace V of sl2(k) with V ⊃ k.12

is equal to a vector space L[b:c] given by an element [b : c] ∈ P1(k)
which is defined as

L[b:c] = k.1n + k.

(

0 b
c 0

)

.

(2) For any element [b : c] ∈ P1(k), the vector space L[b:c] is an ideal
of gl2(k).

(3) In particular, t2(k) = k.12 + n2(k) is an ideal of gl2(k).

Proof. (1) There exists a traceless non constant matrix x ∈ V such
that

I = k.1n + k.x

holds. By subtracting a constant matrix, one may easily replace x by
a matrix with zero diagonals.

(2) By a direct computation we see
[(

x y
z w

)

,

(

0 b
c 0

)]

= (x−w)

(

0 b
c 0

)

+(bz−cy)12 (x, y, z, w, b, c,∈ k)

(Note that char(k) = 0.)
(3) t2(k) = L[1:0]. �

Proposition 5.21. Let k be a field of characteristic 2. Then each
ideal I of gl2(k) is equal to the one in the following list.

(1) 0.
(2) k.1n.
(3) A two-dimensional Lie algebra L[b:c] defined as in the lemma

above.
(4) sln(k).
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(5) gln(k).

Proof. We divide into several cases.
(i) Case where I 6⊂ sl2(k). In this case there exists an element x ∈ I
with tr(x) 6= 0. Putting

x =

(

a b
c d

)

,

we compute as follows

I 3 [e12, x] =

[(

0 1
0 0

)

,

(

a b
c d

)]

=

(

c a + d
0 c

)

.

(Note char(k) = 2.) Then we have

I 3 [e11, [e12, x]] =

[(

1 0
0 0

)

,

(

c a + d
0 c

)]

=

(

0 a+ d
0 0

)

Thus we see that e12 ∈ I. In a same way (by changing the order of the
base), we obtain, e21 ∈ I.

12 = [e21, e12] ∈ I.

Since tr(x) 6= 0, we see that {12, e12, e21, x} spans the gl2(k). thus
I = gl2(k) in this case.
(ii) Case where I ⊂ sl2(k) and I ∩k.12 = 0. Let x be arbitrary element
of I and put

x =

(

a b
c d

)

.

Then by computing [e12, x] as in the case (i) above, we know that c = 0.
Similarly, we know b = 0. Since x is traceless, a = d also holds. So the
only possibility in this case is I = 0.
(iii) Case where k.12 ( I ( sl2(k). By a dimension consideration, we
see that dim I = 2. Then we use the above lemma.
(iv) The case I = k.12 or I = sl2(k). Excellent. There is nothing to in
this case.

�

5.6. Ideals of sln(k).

Proposition 5.22. Let k be a field of characteristic p (possibly 0.)
Let n be a positive integer.

(1) If p 6 |n, then sln(k) is a simple Lie algebra.
(2) If p|n, then sln(k) has a unique nontrivial ideal k.1n.
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Proof. Let I be an ideal of sln(k). By taking trace we see imme-
diately that

1n ∈ sln(k) ⇐⇒ p|n.

Thus if I ⊂ k.1n, then The only nontrivial possibility is that p|n and
I = k.1n.

Assume now that I 6⊂ k.1n. Then by an argument similar to that in
Proposition 5.19, we see that

x = c01n + c1e1n ∈ I, (∃c0, c1 ∈ k, c1 6= 0)

holds.
(1) If p 6 |n, then by taking trace we see that e1n ∈ I. By permuting
the basis, we see that eij ∈ I whenever i 6= j. Thus I = sln(k) in this
case.
(2) If p|n, then by assumption on (p, n) we have n ≥ 3. Thus

I 3 [e21, x] = c1e2n ∴ e1n = [e12, e2n] ∈ I.

So in this case also we see that I = sln(k).
�

Proposition 5.23. Let k be a field of characteristic 2. Then any two
dimensional Lie algebra L[b:c] as in Lemma 5.20 is an ideal of sl2(k).
Thus each ideal I of sl2(k) is equal to the one in the following list.

(1) 0.
(2) k.1n.
(3) L[b:c]

(4) sln(k)

Proof. Easy exercise. �

5.7. Invariant bilinear forms and Killing forms.

Definition 5.24. A symmetric bilinear form B : L × L → k of a
Lie algebra over a field k is said to be invariant if it satisfies

B([Y,X], Z) +B(X, [Y, Z]) = 0 (∀X, Y, Z ∈ L)

(which means that “the Lie derivative of B is zero”), or, equivalently,

B([X, Y ], Z) = B(X, [Y, Z]) (∀X, Y, Z ∈ L)

(which means that B is “balanced”.)

Lemma 5.25. Let L be a Lie algebra over a field k. Let B be an
invariant bilinear form on L. Then for any ideal I of L,

L⊥ = {x ∈ L;B(x, y) = 0(∀y ∈ l)}

is an ideal of L.
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Proof. Easy. �

Note: We need to be a bit careful when we use the notation •⊥. It is
safer to clarify the “container” (L) and bilinear form ρ. So the lemma
above we should have written L⊥ρ,L (eek) in stead of L⊥.

Definition 5.26. Let (ρ, V ) be a finite dimensional representation
of a Lie algebra L over a field k. Then the Killing form with respect
to (ρ, V ) is a bilinear form on L defined by

Trρ,V (XY ) = trV (ρ(X)ρ(Y )).

The ordinary(usual) Killing formκL of L is a bilinear form on L
defined as the Killing form of the adjoint representation. That is,

κL(X, Y ) = Trad,L(XY ) = trad,L(ad(X) ad(Y )).

It is easy to verify that the Killing forms defined as above are invari-
ant.

5.7.1. functoriality of Killing forms.

Lemma 5.27. Let L be a Lie algebra over a field k. Then the follow-
ings are true.

(1) Let V be a finite dimensional representation of L. Let W be a
subrepresentation of V . Then we have

TrV (xy) = TrW (xy) + TrV/W (xy).

(2) Let I be an ideal of L. Assume L is finite dimensional. Then
we have

κL(x, y) = Trad,L(xy) = Trad,I(xy)+Trad,L/I(xy) = Trad,I(xy)+κL/I(x̄, ȳ)

(where •̄ denotes the class of • in L/I.) In particular, for any
x, y ∈ I, we have

κL(x, y) = κI(x, y)

Proof. (2): We choose a basis B = B1

∐

B2 of L such that B2

forms a basis of I. Then B̄1 forms a basis of L/I. Under the basis B,
ad(x) may be represented by a matrix

adL(x) =

(

adL/I(x̄) ∗
0 adI x

)

.

We obtain the result easily from this.
(1): may be proved in a same manner. �
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5.8. Theorem of Iwasawa.

Theorem 5.28. Let L be a Lie algebra over a field k of characteristic
p 6= 0. Then L has a finite dimensional faithful representation. More
precisely, there exists a two-sided ideal I of the universal enveloping
algebra U(L) such that L acts faithfully on U(L)/I.

Before proving the above theorem, we first prove the next lemma.

Lemma 5.29. Under the hypothesis of the theorem, for any x ∈ L,
there exists a monic non constant polynomial fx(X) ∈ k[X] such that

fx(x) ∈ Z(U(L))

holds.

Proof. Let us put s = dim(L). The linear transformation ad(x)
on L is represented by a matrix of size s and has therefore its minimal
polynomial mx: Namely, mx is a monic polynomial of degree no more
than s such that

mx(ad(x)) = 0

holds. Let us divide X,Xp, Xp2
, . . .Xps+1

by mx(X).

Xpj

= mx(X)qj(X)+rj(X) (deg(rj) < s) (j = 1, 2, 3, . . . , s+1)

Then s+1 polynomials {rj(X)}s+1
j=1 of degree ≤ s−1 should be linearly

dependent. That means, there exists a non trivial vector (cj) ∈ ks+1

such that
∑

j

cjX
pj

∈ mx(X)k[X]

holds. Then we have
∑

j

cj(ad(x))pj

= 0.

Thus we conclude

ad(
∑

j

cjx
pj

) = 0.

By dividing
∑

j cjX
pj

by leading coefficient, we obtain the required
polynomial fx.

�

Proof. of the Theorem Let {e1, e2, . . . , es} be a basis of L. Then by
the above lemma we know that there exists a set of monic non constant
polynomials {f1, f2, . . . , fs} such that each hj = fj(ej) belongs to the
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center of U(L). Let us put dj = deg(fj). Then using PWB theorem
we may easily see that











hc1
1 h

c2
2 h

c3
3 . . . hcs

s e
l1
1 e

l2
2 e

l3
3 . . . e

ls
s ;

c1, c2, c3, . . . , cs ∈ N,

l1, l2, l3, . . . , ls ∈ N,

lj < dj(∀j)











forms a basis of U(L). Let us now put

I = U(L)(h1, . . . , hs)

Then A = U(L)/I is a finite dimensional vector space with the base
{

el1
1 e

l2
2 e

l3
3 . . . e

ls
s ;
l1, l2, l3, . . . , ls ∈ N,

lj < dj(∀j)

}

The representation ρA of L on A is faithful. Indeed, for any x ∈ L, we
have

ρA(x) = 0 =⇒ x.1 = 0 in A =⇒ x ∈ I =⇒ x = 0.

�

Definition 5.30. Let L be a Lie algebra.

(1) A representation V of L is called completely reducible if it
is a direct sum of reducible sub representations.

(2) L is called completely reducible if every representation of L
is completely reducible.

The following remark is (at least) in the Book of Bourbaki.

Proposition 5.31. Let L be a non zero finite dimensional Lie al-
gebra over a field k of characteristic p 6= 0. Then L can never be
completely reducible.

Proof. Let us follow the proof of the theorem of Iwasawa. By
taking f 2

1 instead of f1 in the proof, we obtain a representation A1 =
U(L)/I with a non trivial central nilpotent z = f1(e1). Then we see
that zA1 cannot have a direct complementary L-module X. For if it
existed, then X should necessarily a left ideal of A1. On the other
hand, by decomposing 1 ∈ A1 we obtain

1 = x+ za (∃x ∈ X∃a ∈ A1).

Then x = 1 − za has an inverse (1 + za). This implies that

X ⊃ A1x ⊃ A1.

which is a contradiction. �
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5.9. Cartan’s criterion for solvability(Ccs). Cartan’s criterion re-
lates several properties (semi simplicity, solvability) of Lie algebras with
properties of their invariant bilinear forms.

To prove it we need some study on bilinear forms.

Definition 5.32 (in this subsection only). For any free module Rt

over a ring R, We denote by 〈〉R the “usual inner product”. That is,

〈v, w〉R =
∑

i

viwi.

The first thing we do is to observe the property of this inner product
when the base ring R is a “real field”. (Since we only need it for the
case R = Q, we omit the definition of a real field and describe the
following lemma only when R = Q.)

Lemma 5.33. Let W = Qt be a vector space. Let b1, b2, . . . bs ∈ W .
Let B be a s× s matrix defined by

B = (〈bi, bj〉Q).

Then the determinant of B is equal to 0 if and only if {bj}
s
j=1 are

linearly dependent over Q.

Proof. Assume {bj}
s
j=1 are linearly dependent over Q. Then there

exists a non trivial vector (c1, c2, . . . cs) ∈ Qs such that

s
∑

j=1

cjbj = 0

holds. Thus

(c1, c2 . . . , cs)B = 0

So B is a degenerate matrix which implies that det(B) = 0.
Let us now prove the opposite implication. Assume det(B) = 0.

Then there exists a non trivial vector (c1, c2, . . . , cs) such that

(c1, c2 . . . , cs)B = 0

holds. Let us put

v =
∑

j

cjbj.

Then we see that 〈v, v〉Q = 0 and hence v = 0. (Note that for this
implication we have used the fact that Q is a “real field”.) Thus {bj}
are linearly dependent over Q. �

The next task is to compare Q with other field.
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Definition 5.34. For any subset S of a Z-module WZ, Let us put

MGS = max{| det
l×l

(〈bi, bj〉Z)|b1, . . . bl ∈ S}.

(“The maximum modulus of Gram determinants”.) We denote by Sk

the subset of Wk = WZ ⊗Z ⊗k defined by

Sk = {x⊗ 1 ∈ W ⊗Z k; x ∈ S}.

Lemma 5.35. Let S be a finite subset of a free module

WZ = Zt = {(v1, v2, . . . , vt); vj ∈ Z(∀j)}

over Z. Let k be a field of characteristic p. We assume either p = 0 or
p > MGS holds. Then we have

(a ∈ Wk, (a
⊥ ∩ Sk)

⊥⊥ 3 a) =⇒ a = 0

Proof. Assume a 6= 0. Since the inner product 〈•, •〉k is non de-
generate on Wk, we see that (a⊥ ∩Sk)

⊥⊥ is equal to the k-vector space
spanned by (a⊥ ∩ Sk). Thus there exists a set of linearly independent
vectors {bj} ⊂ Sk so that we may write down a as

a =
∑

i

aibi (ai ∈ k).

Then by the assumption on a, we see that
∑

ai〈bi, bj〉k = 0 (∀j)

Thus
det(〈bi, bj〉k) = 0

which is equivalent to

(1) p| det(〈bi, bj〉Z).

Note on the other hand that bj are linearly independent over Z. Thus

det(〈bi, bj〉Z) 6= 0

By the definition of MGS, we see that

(2) 0 < | det(〈bi, bj〉Z)| ≤ MGS

which contradicts to the condition (1). �

Definition 5.36. For any positive integer n, and for any ring k,
we denote by Diagn(k) the set of diagonal matrices in Mn(k). For
any vector a = (ai) ∈ kn, we denote by diag(a) the diagonal matrix
diag(a) = diag(a1, . . . , an). Note that for any ring k, the restriction of
the Killing form of gln coincides with the “usual” inner product with
this identification. That is,

tr(diag(a) diag(b)) = 〈a, b〉k.
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We define the following subset of Diagn(Z).

S [n] = {(diag((ei − ej) − (em − el)); i, j,m, l ∈ {1, 2, 3, . . . , n}}.

(where the vectors {ei}
n
i=1 are elementary vectors.) We note that an

obvious estimate

MGS[n] ≤ 4nn!

holds.

Lemma 5.37. Let n be a positive integer. Let a = (a1, . . . , an), b =
(b1, . . . , bn) ∈ kn.

If b satisfies b ∈ (a⊥∩S [n])⊥, then there exist polynomials f, g ∈ k[X]
such that

f(diag(a)) = diag(b), g(ad(diag(a))) = ad(diag(b))

holds.

Proof. Let us denote by εijlm the vector

εijlm = (ei − ej) − (el − em).

We first find a map f0 from Λa = {ai; i = 1, 2, . . . , n} to Λb = {bi; i =
1, 2, . . . , n} such that

f0(ai) = bi.

Such a thing exists (is “well defined”) if and only if

∀i∀j(ai = aj =⇒ bi = bj)

holds. This condition is equivalent to the condition

∀i∀j(a ⊥ εij11 =⇒ b ⊥ εij11)

which holds by the assumption on b. Thus we see that f0 exists. On
the other hand, by using Lagrange interpolation formula we see that
there exists a polynomial f ∈ k[X] such that f |Λa

= f0. Then we have

f(diag(a)) = diag(b).

The adjoint action of a diagonal matrix diag(a) is represented by a
diagonal matrix (ai−aj)i,j. Thus an argument similar to the one above
proves the existence of g.

�

Proposition 5.38 (Cartan). Let V be an n dimensional vector space
over a field k of characteristic p. We assume that either p = 0 or
p > MGS[n] holds. Let L be a Lie subalgebra of gl(V ). If the Killing
form of L with respect to V is identically equal to 0, then L is solvable.
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Proof. We may assume that k is algebraically closed. Let us take
an element x ∈ [L, L]. Then we have

(adxs)(L) = (ad x)s(L) ⊂ L

Let us now diagonalize xs and write xs = diag(a). Let us take arbi-
trary b ∈ (a⊥ ∩ S [n])⊥. By the lemma above we see that there exist
polynomials f, g ∈ k[X] such that

f(diag(a)) = diag(b), g(ad(diag(a))) = ad(diag(b))

holds. For any w =
∑

l[ylzl] ∈ [L, L], we have:

tr(diag(b)[
∑

l

ylzl]) =
∑

l

tr([diag(b), yl]zl)

=
∑

l

tr(ad(diag(b)).yl zl) =
∑

l

tr(g(ad(diag(a))).yl zl)

=
∑

l

tr(g(ad(xs)).yl zl) ∈
∑

l

tr(LL)

= 0

That means, tr(diag(b)w) = 0. In particular, we have

tr(diag(b)x) = 0.

Since diag(b) = f(diag(a)) = f(xs) is a polynomial in x, it commutes
with xs and with xn. thus

diag(b)x = (diag(b)xs) + (diag(b)xn)

gives the Jordan-Chevalley decomposition of diag(b)x. Therefore,

0 = tr(diag(b)x) = tr(diag(b)xs) = tr(diag(b) diag(a)) = 〈b, a〉k

thus b ⊥ a.
To sum up, we have shown

(a⊥ ∩ S)⊥ 3 b =⇒ b ∈ a⊥.

In other words,

(a⊥ ∩ S)⊥⊥ 3 a

which is equivalent to saying that a is a linear combination of elements
in (a⊥ ∩ S).

In view of Lemma 5.35, we see that a = 0. So x = xs + xn = xn is a
nilpotent element.

By the theorem of Engel, we conclude that [L, L] is nilpotent. Thus L
is solvable (since we have shown that L/[L, L] and [L, L] are solvable).

�
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Definition 5.39. We say that the Cartan’s criterion for solvability
(Ccs) holds for a linear Lie algebra L ⊂ (gln(k)) over a field k if it
satisfies the following condition.
(Ccs) If the Killing form on L associated to kn is identically zero, L is
solvable.

Let n be a positive integer. We denote by Ccs(n) the set of p such
that Ccs holds for any Lie algebra L of dimension less than or equal to
n for any field k of characteristic p.

Ccs(n) = {p; Ccs holds for any(L ⊂ gln(k)) provided char(k) = p, }

Corollary 5.40 (of Proposition). Let n be a positive integer. Then:

(1) 0 ∈ Ccs(n)
(2) For any prime p which is larger than MGS[n], we have p ∈

Ccs(n).
(3) In particular, for any prime p which is larger than 4nn!, we

have p ∈ Ccs(n).

Note:
The estimate given in the above corollary is presumably far from the

best one.

Proposition 5.41. Let n be a positive integer. Let k be a field
of characteristic p ∈ Ccs(n). Let L be a Lie algebra over k whose
dimension is less than or equal to n. If the usual Killing form κ =
Trad,L of L is identically equal to zero, then L is solvable. In particular,
if p > 4nn! or p = 0, then L is solvable if its usual Killing form is
identically equal to zero.

Proof. Apply the definition to

L/(center ofL) ↪→ gln(L).

�

5.10. Cartan’s criterion for semisimplicity.

Definition 5.42. We call a Lie algebra L over k non degenerate
if the Killing form κL of L is non degenerate.

Lemma 5.43. Every non degenerate Lie algebra L over a field k is
semisimple.

Proof. Assume that there exists a non trivial abelian ideal A of L.
Let y0 be a non zero element of A. Then for any x ∈ L, z = ad(x) ad(y0)
is nilpotent. Indeed,

z(L) = ad(x) ad(y0)(L) = ad(x)([y0, L]) ⊂ ad(x)(A) ⊂ A,
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z2(L) = ad(x) ad(y0)(z(L)) ⊂ ad(x) ad(y0)(A) = ad(x)[y0, A] = 0.

Thus κ(x, y0) = tr(ad(x) ad(y0)) = 0 for for any x ∈ L. That means,
y0 ∈ L⊥. This is contrary to the assumption on L. �

Proposition 5.44. Let n be a positive integer. Let k be a field of
characteristic p ∈ Ccs(n). Let L be a Lie algebra of dimension n. Then
the following conditions are equivalent:

(1) L is semisimple.
(2) L is non degenerate.
(3) L is a direct sum of simple ideals.

Proof. ((1) =⇒ (2)): Assume L is semisimple. Let us take an
ideal I = L⊥ of L. Then the Killing form on I is identically equal to
zero. since dim(I) ≤ n, I is a solvable algebra. Since L is semisimple,
this implies I = 0.
((2) =⇒ (1)): holds (regardless of the base field) in view of the
previous lemma.
((3) =⇒ (2)): We see that simple algebras are non degenerate in view
of the argument above. Thus L is also non degenerate.
((2) =⇒ (3)): Let H be a nontrivial ideal of L. Then H ∩H⊥ is an
abelian ideal of L. Indeed, for any y, z ∈ H ∩ H⊥ and for any x ∈ L,
we have

κ(x, [y, z]) = κ([x, y], z) ∈ κ(H,H⊥) = 0

So that [y, x] ∈ L⊥ = 0. On the other hand, by the previous lemma we
see that H∩H⊥ is semisimple and so we have H∩H⊥ = 0. Accordingly
we have L = H ⊕H⊥.

�

5.11. examples.

Example 5.45. Let k be a field of characteristic p (possibly 0).

gln(k)

is a Lie algebra with the Killing form

κgln(k)(x, y) = tr((λ(x) − ρ(x))(λ(y) − ρ(y)))

= tr(λ(xy)) + tr(ρ(xy)) − tr(λ(x)ρ(y) − tr(λ(y)ρ(x))

=2n tr(xy) − 2 tr(x) tr(y).

sln(k) is an ideal of gln(k) and so its Killing form is given by

κsln(k)(x, y) = 2n trkn(xy).

If p 6 |2n, then the Killing form is easily seen to be non-degenerate. so
sln(k) is a non-degenerated Lie algebra in this case. In this way we see
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that it is a semisimple Lie algebra. The Lie algebra is actually simple
as we have shown in Proposition 5.22.

Example 5.46. Let p be an odd prime. Let k be a field of charac-
teristic p. Then we have shown in Proposition 5.19 that the only non
trivial ideals of glp(k) are slp(k) and k.1p. So we see that

L = glp(k)/k.1p

is a semisimple Lie algebra (as it has no proper abelian ideals). It has
a unique nontrivial ideal

M = slp(k)/k.1p.

Thus L cannot be a direct sum of simple Lie algebras.

5.12. Weyl’s theorem on complete reducibility.

Definition 5.47. Let L be a finite dimensional Lie algebra. Let B
be a non-degenerate invariant bilinear form on L. Then we define the
Casimir element CB ∈ U(L) with respect to B by

CB =
∑

i

xix
(i)

where {xi} is a basis of L, and {x(i)} is the dual basis of the basis {xi}
with respect to B.

Proposition 5.48. Under the same assumption of the definition
above, we have the following facts.

(1) The Casimir operator CB is independent of the choice of the
basis {xi} of L.

(2) CB commutes with L. So it is in the center of U(L).

Proof. (1): easy exercise in linear algebra.
(2): For any a ∈ L, let us write the adjoint action of a on L by using
the basis {xi}. Namely,

[a, xi] =
∑

j

c
(j)
i (a)xj (c

(j)
i (a) ∈ k).

Then the constants {c
(l)
i (a)} (“structure constants”) are expressed in

terms of B as follows.

B(x(l), [a, xi]) =
∑

j

c
(j)
i (a)B(x(l), xj) = c

(l)
i (a)

We note that from the invariance of B, we have

B([x(l), a], xi) = c
(l)
i (a),
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so that we have a dual expression

[x(l), a] =
∑

i

c
(l)
i (a)x(i).

Then we compute as follows.

[a, CB] =
∑

i

[a, xi]x
(i) +

∑

i

xi[a, x
(i)]

=
∑

i

∑

j

c
(j)
i (a)xjx

(i) −
∑

i

∑

j

c
(i)
j (a)xix

(j) = 0.

�

Definition 5.49. Let L be a finite dimensional Lie algebra. Let
V be a finite dimensional L-module. TrV (••) with respect to V . We
assume that the Killing form TrV (••) with respect to V is non de-
generate. Then we define the Casimir element with respect to V
by

CV = CTrV

where {xi} is a basis of L, and {xi} is the dual basis of the basis {xi}
with respect to the Killing form TrV .

Lemma 5.50. Let k be a field of characteristic p. Let L be a n-
dimensional semisimple Lie algebra over a field k. Let V be a m-
dimensional L-module. Let I be the kernel of the representation ρV

associated to V . We assume p ∈ Ccs(n) ∩ Ccs(m). Then the Killing
form TrV on L/I is non degenerate.

Proof. L is semisimple and p ∈ Ccs(n) so L is semisimple. L/I is
also non-degenerate so L/I is semisimple. We may thus assume I = 0.
An ideal

J = L⊥TrV

of L is a solvable ideal. Since L is semisimple and p ∈ Ccs(m), we have
by J = 0. That means, TrV is non-degenerate on L.

�

Lemma 5.51. Let k be a field of characteristic p (which may be 0).
Let (L,W ⊂ V ) be a triple which satisfies the following conditions.

(1) L is a semisimple Lie algebra over k.
(2) V is a finite dimensional irreducible L-module.
(3) W is an L-submodule of V of codimension 1.
(4) p ∈ Ccs(dim(L)) ∩ Ccs(dim(V )).
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Then the exact sequence

0 →W → V → V/W → 0

splits. In other words, there exists a 1-dimensional L-submodule X of
V which is complementary to W .

Proof. Since the question of existence of X is described in terms
of existence of a solution of a set of linear equations, we may assume
that k is algebraically closed. Let us denote by ρV the representation
of L associated to V . Then by replacing L by L/ ker(ρV ) if necessary,
we may assume that the representation ρV is faithful.

Note that since L is semisimple, it acts on V/W trivially.
Let us first treat the case where W is irreducible. Let c = cV be a

Casimir element with respect to V . Since L is acts on V/W trivially,
c|V/W is equal to zero. Thus

dim(V ) = trV (c) = trW (c|W ) + trV/W (c|V/W ) = trW (c|W ).

In particular, c|W is not equal to zero. On the other hand, by Schur’s
lemma, c|W is equal to a scalar λ ∈ k. Thus X = Ker(c) is a required
object in this case.

We next come to general case. Let W1 be the maximal proper L-
submodule of W . Then we see that (L,W/W1 ⊂ V/W1) satisfies the
assumption of the lemma with W/W1 irreducible. By the argument
above, we therefore see that there exists an L-submodule Y which
contains W1 as a submodule of codimension 1 such that

V/W1 = Y/W1 ⊕W/W1

holds. Since (L,W1 ⊂ Y ) also satisfies the assumption of the lemma
with dim(Y ) < dim(V ), we deduce by induction that the lemma holds
in general.

�

Lemma 5.52. Let L be a Lie algebra over a commutative ring k.
Then for any L-modules V,W , each of the vector spaces

Homk -linear(V,W )

and
V ⊗k W

admits a structure of L-module. Namely,

(x.f)(v) = x.(f(v))−f(x.v) (∀x ∈ L, ∀f ∈ Homk -linear(V,W )∀v ∈ V ),

(x.v ⊗k w) = (x.v) ⊗ w + v ⊗k (x.w) (∀x ∈ L, ∀v ∈ V, ∀w ∈ W ).

Proof. Easy. �
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Theorem 5.53 (Weyl). Let k be a field of characteristic p (which
may be 0). Let L be a non degenerate Lie algebra over k. Let V be
a finite dimensional irreducible L-module. Assume p ∈ Ccs(dim(V )2).
Then V is completely reducible.

Proof. Let us define the following L-modules.

V1 = {f ∈ Homk -linear(V,W ); f |W ∈ k.1W}

W1 = {f ∈ Homk -linear(V,W ); f |W = 0}

Then it is easy to see that the triple (L,W1 ⊂ V1) satisfies the assump-
tion of Lemma 5.51. We therefore have an element f ∈ Homk -linear(V,W )
which satisfies the following conditions.

(1) f |W ∈ k.1W .
(2) f |W 6= 0.
(3) x.f = 0 (∀x ∈ L) (In other words, f is a L-linear homomor-

phism).

by dividing by a suitable element in k, we may assume f |W = 1W .
Then f gives a splitting of the exact sequence

0 →W → V → V/W → 0.

�

5.13. Semi direct products of Lie algebras.

Definition 5.54. Let L be a Lie algebra over a commutative ring
k. Then:

(1) A (k-linear) derivation of L is a k-linear map D : L→ L such
that it obeys the following “Leibniz rule”.

D([x, y]) = [Dx, y] + [x,Dy] (∀x, y ∈ L).

(2) We denote by Derk(L) the set of all derivations of L.

Lemma 5.55. (1) Any derivation D of a Lie algebra L is lifted
to a derivation on the universal enveloping algebra U(L).

(2) Derk(L) forms a Lie algebra under the usual k-linear structure
and the usual commutator as the bracket product.

Definition 5.56. Let L1, L2 be Lie algebras over a commutative
ring k. we say “L1 acts on L2 as a derivation” if there is given a
Lie algebra homomorphism

π : L1 → Derk(L2).

If the action π is obvious in context, we shall simply denote x.y instead
of π(x).y.
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Definition 5.57. Let L1, L2 be Lie algebras over a commutative
ring k. Assume there is given an action π of L1 on L2. Then we define
a semi direct product L1 nπ L2 of L1 and L2 by introducing the
k-module L1 ⊕ L2 with the following bracket product.

[(x1, x2), (y1, y2)] = ([x1, y1], [x2, y2] + x1.y2 − y1.x2).

Note that

(1) L1 and L2 are (identified with) subalgebras of L1 nπ L2.
(2) Further more, L2 is an ideal of L1 nπ L2.
(3) For x ∈ L1 and y ∈ L2, we have

[x, y]L1nL2 = x.y.

5.14. Levi decomposition.

Definition 5.58. Let L be a Lie algebra over a field k. Let R be
the radical of L. A Levi-subalgebra of L is a subalgebra L1 of L such
that L is a direct sum of L1 and R as a vector space over k.

We have the following obvious lemma.

Lemma 5.59. Let L be a Lie algebra over a field k. Let R be the
radical of L. Let L1 be a Levi-subalgebra of L. Then:

(1) L ∼= L1 n R.
(2) L1

∼= L/R.

In particular the isomorphism class of L1 is unique.

�

Lemma 5.60. Let n be a positive integer. Let L be an n-dimensional
Lie algebra over a field k of characteristic p ∈ Ccs(n2). Assume the
radical R of L is abelian. Then:

(1) R = L⊥. (We equip L with the usual Killing form.)
(2)

Homk -linear(L,R)

admits an action α of L. Namely,

(α(x).ϕ)(y) = [x, ϕ(y)] − ϕ([x, y]) (x ∈ L, y ∈ L).

(3) For any x ∈ L, we have (α(x).ϕ))|R = 0.
(4) For any x ∈ R, α(x) is nilpotent.
(5)

V1 = {ϕ ∈ Homk -linear(L,R);ϕ|R ∈ k · idR}

is an R-submodule of Homk -linear(L,R).
(6) If R is not equal to zero, then

V2 = {ϕ ∈ HomR -module(L,R);ϕ|R ∈ k · idR} 6= 0.
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(7) There exists a Levi subalgebra L1 of L.

Proof. (1) Since L⊥ has a trivial Killing form, it is solvable. (Car-
tan’s criterion.) Thus, by the maximality of R, we have

R ⊃ L⊥.

On the other hand, let us take an arbitrary x ∈ R, then for any y, z ∈ L,
we have

ad(x) ad(y)z = [x, [y, z]] ∈ [x,R] ⊂ R,

(ad(x) ad(y))2z ∈ [x, [y, R]] ⊂ [x,R] = 0 (Since R is abelian.)

So κL(x, y) = trL(ad(x) ad(y)) = 0 (as a trace of a nilpotent element.)
Thus

R ⊂ L⊥

also holds.
(2):follows from the general theory.
(3):follows easily from the definition of α.
(4):Let us take an arbitrary x ∈ R. For any y ∈ L, we have by using(2)

((α(x)2).ϕ)(y) = [x, (x.ϕ)(y)] − (x.ϕ)([x, y]) ∈ [R,R] − (x.ϕ)(R) = 0.

Thus α(x)2 = 0.
(5): follows clearly from (3).
(6): follows from (4),(5) and Engel’s theorem. (We need to note that

V2 = {ϕ ∈ V1; ∀x ∈ R(α(x).ϕ = 0)}

holds.) (7): The action of R on V2 is equal to zero. So V2 admits an
action by L/R, which is semisimple. Now consider the following exact
sequence of L/R-modules.

0 → V0 → V2
|R
→ k → 0

where V0 is the kernel of the restriction map. By a special case of
Weyl’s theorem on complete reducibility (Lemma 5.51), We see that
the sequence splits. (Since we assumed p ∈ Ccs(n2)). This implies that
there exists an element ϕ0 ∈ V2 such that

α(x).ϕ0 = 0, ϕ0|R = idR .

Thus ϕ0 gives a splitting of the injection R ⊂ L. A Levi subalgebra of
L is obtained by putting

L1 = {x− ϕ0(x); x ∈ L}.

�
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Theorem 5.61 (Levi decomposition of a Lie algebra). Let n be a
positive integer. Let p ∈ Ccs(n2). Let L be a n-dimensional Lie algebra
over a field of characteristic p. Then L has a Levi subalgebra L1. In
other words, L may be expressed as a semi direct product

L = L1 n R

where L1 is a semisimple (Levi) subalgebra of L, and R is a solvable
(radical) ideal of L.

Proof. If R = 0, then we only need to set L1 = L. So let us assume
R 6= 0. Let us put

R1 = [R,R].

Then from the definition, we R/R1 is an abelian Lie algebra. It is also
easy to verify that R1 is an ideal of L. (R1 is a characteristic ideal of
R). We apply the preceding lemma for R/R1 ⊂ L/R1 to obtain a Levi
subalgebra M/R1 of L/R1. Then M satisfies the following relations.

M +R = L, M ∩ R = R1.

Since R is solvable (and we have assumed R 6= 0), we see that dim(M)
is strictly smaller than dim(L). By induction M have a Levi subalgebra
M1. Then it is clear that M1 is a Levi subalgebra of L.

�

5.15. Abstract Jordan Chevalley decomposition.

Proposition 5.62. Let n be a positive integer. Let L be a n-
dimensional semisimple Lie algebra over a field k of characteristic
p ∈ Ccs(n4). Then any derivation D ∈ Derk(L) of L is inner. That is,
there exists an element x = xD such that

D(y) = [xD, y] = ad(xD)(y).

Proof. Derk(L) is itself a Lie algebra. Sending each element x of L
to its “inner derivation” ad(x), we obtain a Lie algebra homomorphism

ad : L→ Derk(L)

We note that dim(Derk(L)) ≤ dim(L)2, and that ad may be viewed as
a homomorphism of L-modules. (L acts on Derk(L) via ad. Namely,

x.D = ad(x).D = [ad(x), D] = [x,D•] −D([x, •]) = − ad(D.x)

holds for any x ∈ L and for any D ∈ Derk(L).) By the Weyl’s the-
orem on complete reducibility, we see that there exists a direct sum
decomposition

Derk(L) = ad(L) ⊕X
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of L-modules. Then for any D ∈ X and for any x ∈ L, we see that

x.D(= − ad(D.x)) ∈ X ∩ ad(L) = 0.

So D = 0. That means, X = 0.
�

Proposition 5.63. Let n be a positive number Let k be a separably
closed field of characteristic p ∈ Ccs(n4). We assume further that n is
invertible in k. (This assumption is provided just in case: it probably
is not necessary because the assumption p ∈ Ccs(n4) is presumably
much stronger.) Let L ⊂ gln(k) be a linear semisimple Lie algebra.
We assume that the representation Lykn is irreducible. Then for any
element x ∈ L, its semisimple part xs and its nilpotent part xn in gln(k)
lies in L.

Proof. We may assume k is algebraically closed. Let x ∈ L It is
enough to prove xn ∈ L. There exists a polynomial f ∈ k[X] such that
xn = f(x). Thus we see

adxn(L) ⊂ L.

Thus adxn is a derivation of L. By the preceding lemma we see that
there exists an element y ∈ L such that

ad xn = ad y

By Schur’s lemma, we see that there exists a constant c ∈ k such that

xn = y + c · 1n.

Let us compute traces of both hand sides. Since L = [L, L] (L has no
non-trivial ideals.), we have tr(y) = 0. Since xn is nilpotent, we have
tr(xn) = 0. Thus we conclude c = 0 (as we assumed n is invertible in
k.) �

Proposition 5.64. Let n be a positive integer. Let L be a semisim-
ple Lie algebra over a separably closed field k of characteristic p ∈
Ccs(n4). Let V1 = (V1, π1), V2 = (V2, π2) be faithful irreducible repre-
sentations of L with dimensions less than or equal to n. Then for any
x ∈ L, the Jordan Chevalley decomposition of x

x = x(1)
s + x(1)

n

with respect to V1 and that

x = x(2)
s + x(2)

n

with respect to V2 coincides.
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Proof. We consider a faithful representation (V, π) = (V1⊕V2, π1⊕
π2). For any x ∈ L,

π(x) =

(

π1(x) 0
0 π2(x)

)

=

(

π1(x
(1)
s ) 0

0 π2(x
(2)
s )

)

+

(

π1(x
(1)
n ) 0

0 π2(x
(2)
n )

)

satisfies the requirement for the Jordan Chevalley decomposition so by
the uniqueness we see

π(x)s =

(

π1(x
(1)
s ) 0

0 π2(x
(2)
s )

)

, π(x)n =

(

π1(x
(1)
n ) 0

0 π2(x
(2)
n )

)

.

Now we argue in a same way as in the proof of the previous proposition
and see that there exists a unique element y ∈ L such that

ad(xn) = ad(y)

holds. By comparing entries, we obtain

ad(π1(y)) = ad(π1(x
(1)
n )), ad(π2(y)) = ad(π2(x

(2)
n )).

Since L has trivial center, we have

π1(y) = π1(x
(1)
n ), π2(y) = π2(x

(2)
n ).

Thus y = x
(1)
n = x

(2)
n . �

Definition 5.65. Let n be a positive integer. Let L be an n-
dimensional semisimple Lie algebra over a separably closed field k of
characteristic p ∈ Ccs(n4). Then the abstract Jordan Chevalley
decomposition of x is an decomposition

x = xs + xn (xs, xn ∈ L)

such that

ad(x) = ad(xs) + ad(xn)

is the Jordan Chevalley decomposition.

Proposition 5.66. Let n be a positive integer. Let L be an n-
dimensional Lie algebra over a separably closed field k of characteristic
p ∈ Ccs(n4) Then the abstract Jordan Chevalley decomposition of x
exists. If furthermore there is given a m-dimensional representation
(V, π) of L and p ∈ Ccs(m4), then

π(x) = π(xs) + π(xn)

gives the Jordan Chevalley decomposition of x.
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Proof. Easy exercise. (Be sure to use Weyl’s theorem of complete
reducibility. By taking quotient by a certain ideals (kernels of represen-
tations) one may reduce the proposition to a case where L is semisimple
and π is faithful and irreducible. )

�
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