TOPICS IN NON COMMUTATIVE ALGEBRAIC GEOMETRY AND CONGRUENT ZETA FUNCTIONS (PART V). WEYL ALGEBRAS REVISITED

YOSHIFUMI TSUCHIMOTO

1. A REVIEW

Let us first recall the definition. (See Part I for details.)

DEFINITION 1.1. Let k be a field. Let n be a positive integer. A Weyl algebra $A_n(k)$ over a commutative ring k is an algebra over k generated by 2n elements $\{\gamma_1, \gamma_2, \ldots, \gamma_{2n}\}$ with the "canonical commutation relations"

(CCR)
$$[\gamma_i, \gamma_j] (= \gamma_i \gamma_j - \gamma_j \gamma_i) = h_{ij} \quad (1 \le i, j \le 2n).$$

Where h is a non-degenerate anti-Hermitian $2n \times 2n$ matrix of the following form.

$$(h_{ij}) = \begin{pmatrix} 0 & -1_n \\ 1_n & 0 \end{pmatrix}$$

Throughout this section, the letter h will always represent the matrix above and the letter \bar{h} will always represent the inverse matrix of h.

1.1. perfect field.

DEFINITION 1.2. A field k of characteristic $p \neq 0$ is called **perfect** if the Frobenius homomorphism

$$k \ni x \to x^p \in k$$

is surjective.

1.2. A matrix representation of Weyl algebra. From now on in this section we fix a prime number p and we assume k is a field of characteristic p. We will simply write A_n instead of $A_n(k)$.

Let us define operators (matrices) $\{\mu_i\}_{i=1}^{2n}$ acting on p^n -dimensional vector space

$$V = k[x_1, x_2, \dots, x_n]/(x_1^p, x_2^p, \dots, x_n^p)$$

by

$$\mu_i = \text{multiplication by } x_i \\ \mu_{i+n} = \partial/\partial x_i.$$
 $i = 1, 2, \dots, n.$

Let

$$S_n = k[T_1, T_2, \dots, T_{2n-1}, T_{2n}]$$

be a polynomial ring of 2n-variables over k.

Then we have a faithful representation

$$\Phi: A_n \to M_{p^n}(S_n)$$

of the Weyl algebra A_n by putting

$$\Phi(\gamma_i) = T_i \cdot 1_{p^n} + \mu_i.$$

Furthermore, for any $c = (c_1, c_2, \ldots, c_{2n}) \in k^{2n}$, we have by specialization the following representation of A_n .

$$\Phi_c: A_n \to M_{p^n}(k)$$

by putting

$$\Phi_c(\gamma_i) = c_i \cdot 1_{p^n} + \mu_i.$$

We recall also that

LEMMA 1.3. (Part I, Lemma 7.3) The center Z_n of A_n is isomorphic to a polynomial algebra with 2n indeterminates. Namely,

$$Z_n = k[\gamma_1^p, \gamma_2^p, \dots, \gamma_{2n}^p].$$

LEMMA 1.4. (Part I, Corollary 7.8) Let k be an algebraically closed field of characteristic $p \neq 0$. Then every finite dimensional irreducible representation $\alpha : A_n(k) \to \operatorname{End}_k(V)$ of $A_n(k)$ is equivalent to a representation Φ_c for some $c \in k^{2n}$.

LEMMA 1.5. Let k be a field of characteristic p. If k contains infinite number of elements, then:

$$\bigcap_{c \in k^{2n}} \operatorname{Ker}(\Phi_c) = 0.$$

Here is another thing we need to know.

LEMMA 1.6. Φ gives a k-algebra isomorphism

$$\hat{\Phi}: S_n \otimes_{Z_n} A_n \cong M_{p^n}(S_n).$$

PROOF. One may easily verify that we have a well-defined homomorphism given by

 $\hat{\Phi}: S_n \otimes_{Z_n} A_n \ni f \otimes a \mapsto f\Phi(a) \ni M_{p^n}(S_n).$

For any $j \in \{1, 2, 3, ..., 2n\}$, we have

$$\Phi(1 \otimes \gamma_j - T_j \otimes 1) = \mu_j$$

So the image Image($\hat{\Phi}$) contains μ_j . Since we know that $\{\mu_j\}_{j=1}^{2n}$ generates $M_{p^n}(k)$ as k-algebra (Part I, Corollary 7.10), we conclude that the map $\hat{\Phi}$ is surjective.

Now, both $S_n \otimes_{Z_n} A_n$ and $M_{p^n}(S_n)$ is free S_n -modules of rank p^{2n} . So the map $\hat{\Phi}$ is generically injective. (That means, if we take the quotient field $Q(S_n)$ of S_n and consider

$$1_{Q(S_n)} \otimes \Phi : Q(S_n) \otimes_{S_n} (S_n \otimes_{Z_n} A_n) \to M_{p^n}(Q(S_n)).$$

then by an elementary theorem in linear algebra, we see that it is an isomorphism.)

Since S_n (a polynomial algebra over S_n is an integral domain, $S_n \otimes_{Z_n} A_n$ is Z_n -torsion free. (That means,

$$S_n \otimes_{Z_n} A_n \to Q(S_n) \otimes_{S_n} (S_n \otimes_{Z_n} A_n)$$

is injective.)

So we see that $\hat{\Phi}$ is injective.

1.3. Algebra endomorphisms and centers of Weyl algebras.

LEMMA 1.7. Let k be a field of characteristic $p \neq 0$. For any kalgebra endomorphism ϕ of $A_n(k)$,

- (1) $\Phi_c \circ \phi$ is a surjective homomorphism for any $c \in k^{2n}$.
- (2) $\phi(Z_n(k)) \subset Z_n(k).$

PROOF. We may assume that k is an algebraically closed field.

(1) The composition $\phi_c = \Phi_c \circ \phi$ is a representation of A_n . By Lemma 1.4 we see that any irreducible sub representation of ϕ_c is equivalent to $\Phi_{\bar{c}}$ for some $\bar{c} \in k^{2n}$. By a dimensional argument, we conclude that ϕ_c itself is equivalent to $\Phi_{\bar{c}}$. (In other words, there exists $g_c \in \mathrm{GL}_n(k)$ such that

$$\phi_c(x) = g_c \Phi_{\bar{c}}(x) g_c^{-1} \qquad (\forall x \in A_n)$$

holds.) Thus ϕ_c is surjective as required.

(2) Let $z \in Z_n$, $x \in A_n$. For any $c \in k^{2n}$, we have (using the same notation as above)

$$[\phi_c(z), \phi_c(x)] = \phi_c([z, x]) = 0$$

Since we know by (1) that ϕ_c is surjective, we see that $\phi_c(z)$ belongs to the center of $M_{p^n}(k)$. In particular for any $y \in A_n$, we have

$$\Phi_c([\phi(z), y]) = [\Phi_c(\phi(z)), \Phi_c(y)] = [\phi_c(z), \Phi_c(y)] = 0.$$

Thus

$$[\phi(z), y] \in \bigcap_{c} \operatorname{Ker}(\Phi_{c}) = 0.$$

So $\phi(z) \in Z(A_n) = Z_n$ as required.

COROLLARY 1.8. Let $\phi : A_n \to A_n$ be a k-algebra endomorphism of A_n . Then by restriction we obtain a homomorphism

$$\phi_{Z_n}: Z_n \to Z_n$$

Furthermore, if the base field k is perfect, then ϕ may be uniquely extended to its p-th root.

$$\phi_{S_n}: S_n \to S_n.$$

In precise, Let us write down ϕ_{Z_n} like

$$\phi_{Z_n}(\gamma_j^p) = \sum_I f_{j,I}(\gamma^p)^I \quad (j = 1, 2, \dots, 2n).$$

Then ϕ_{S_n} is given by the following formula.

$$\phi_{S_n}(T_j) = \sum_I (f_{j,I})^{1/p} T^I \quad (j = 1, 2, \dots, 2n).$$

Here comes a geometric interpretation of endomorphisms of Weyl algebras.

COROLLARY 1.9. Let k be a perfect field of characteristic $p \neq 0$. Let $\phi : A_n \to A_n$ be a k-algebra endomorphism of A_n . Then we have a matrix valued function $G \in \operatorname{GL}_{p^n}(S_n)$ and a morphism $f : \operatorname{Spec}(S_n) \to \operatorname{Spec}(S_n)$ which enables the following diagram commute.

Where $\bar{\phi}$ is defined as

$$(**) \qquad \qquad \bar{\phi}(x) = Gf^*(x)G^{-1}$$

We may write down the commutative diagram above as the following equation.

$$\Phi(\phi(a)) = Gf^*(\Phi(a))G^{-1}$$

PROOF. Let us define

$$\phi_{Z_n}: Z_n \to Z_n$$

and

$$\phi_{S_n}: S_n \to S_r$$

as in the previous Corollary. We put $f = \text{Spec}(\phi_{S_n})$. We have an well-defined Z_n -algebra homomorphism

$$\phi_{S_n} \otimes \phi : S_n \otimes_{Z_n} A_n \to S_n \otimes_{Z_n} A_n.$$

By using the isomorphism in , we obtain a Z_n -homomorphism

$$\bar{\phi} = \hat{\Phi}(\phi_{S_n} \otimes \phi)\hat{\Phi}^{-1} : M_{p^n}(S_n) \to M_{p^n}(S_n)$$

which is compatible with ϕ in the sense that it satisfies the commutative diagram (*) of the statement.

It remains to prove that the map $\overline{\phi}$ is represented as (**). By pullback, we obtain an S_n -algebra homomorphism

$$\rho: M_{p^n}(S_n) \cong S_n \otimes_{\phi_{S_n}, S_n} M_{p^n}(S_n) \ni y \otimes x \mapsto y\bar{\phi}(x) \in M_{p^n}(S_n).$$

Where the first isomorphism in the above line is the inverse of the following S_n -algebra homomorphism.

$$S_n \otimes_{\phi_{S_n}, S_n} M_{p^n}(S_n) \ni y \otimes x \mapsto yf^*(x) \in M_{p^n}(S_n).$$

by an argument similar to that in (I,Lemma 7.9), we see that there exists $G \in GL_{p^n}(S_n)$ such that

$$\rho(x) = GxG^{-1} \qquad (\forall y \in M_{p^n}(S_n))$$

holds. (See appendix for the detail.)

1.4. appendix.

DEFINITION 1.10. (temporary) Let R be a commutative ring. A finitely generated R-module M is said to be **projective** if there exists an R-module M' such that

$$M \oplus M' \cong R^{\oplus n}$$

for some n.

We shall argue homological algebra in much more detail later. So the definition here is meant to be minimum. See a book on homological algebra for "correct definition".

DEFINITION 1.11. Let R be a domain. The generic rank of M is the rank of $Q(R) \otimes_R M$ over the quotient field Q(R).

LEMMA 1.12. Let R be a commutative unique factorization domain(UFD). Suppose an R module M satisfies the following conditions.

(1) M is of generic rank 1.

(2) M is finitely generated.

(3) M is projective.

Then M is R-free of rank 1.

PROOF. (Essentially borrowed from [1]) Let K = Q(R) be the quotient field of R.

Since M is projective and R is an integral domain, M is torsion free. So

$$\iota: M \to M \otimes_R K$$

is injective. Since M is of generic rank 1, $M \otimes_R K$ is isomorphic to K. as a K-module. We may thus assume that $M \subset K$. Since M is finitely generated, we may further assume that $M \subset R$.

Now, Let us paraphrase the condition that M being projective. First of all, the condition is equivalent to an existence of R-module homomorphisms

$$f: M \to R^n, g: R^n \to M$$

such that $g \circ f = id$. Secondly, we may then represent f, g in matrix form.

$$f(m) = \begin{pmatrix} f_1(m) \\ f_2(m) \\ \vdots \\ f_n(m) \end{pmatrix}, \quad g(\begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{pmatrix}) = (g_1, g_2, g_3, \dots, g_n) \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{pmatrix}$$
$$f: M \to R^n, g: R^n \to M$$

such that $g \circ f = id$.

Thirdly, each f_i, g_i is represented by a linear map from K to K. That means, by an element of K.

$$f = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \qquad g = (b_1, b_2, b_3, \dots, b_n)$$

We may obtain several properties of $\{a_i\}, \{b_j\}$:

(i) $g(R^n) \subset M$ implies $b_i \in M \subset R(\forall i)$. (ii) $g \circ f : R^n \to R^n$ implies $a_i b_j \in R(\forall i \forall j)$. (iii) $g(R^n) \subset M$ implies $b_i \in M(\forall i)$. (iv) $g(R^n) = M$ implies $\sum_i Rb_i = M$. (v) $g \circ f = \text{id implies } \sum_i b_i a_i = 1$.

Let us write

$$a_i = \frac{l_i}{m_i}$$
 (gcd(l_i, m_i) = 1).
 $R \ni a_i b_j = \frac{l_i b_j}{m_i}$

Since l_i and m_i are coprime, we conclude that b_j is divisible by m_i . Let us denote by l the largest common multiple of m_1, m_2, \ldots, m_n .

 $l|b_i$

By (iv) we see $M \subset lR$. By (v) we see

$$l = l \sum_{i} b_{i} a_{i} = \sum_{i} b_{i} l_{i} \frac{l}{m_{i}} \in \sum_{i} b_{i} R \subset M.$$

Thus $M \supset lR$. So M = lR.

LEMMA 1.13. Let R be a commutative UFD. Then for any R-algebra homomorphism

$$\rho: M_n(R) \to M_n(R)$$

there exits an element $G \in GL_n(R)$ such that

$$\rho(x) = GxG^{-1}$$

holds for any $x \in M_n(R)$.

PROOF. Let us denote by $e_{ij} \in M_n(R)$ the matrix element. Let us consider *R*-modules

$$M_i = \rho(e_{ii})R^n$$
 $(i = 1, 2, 3, ..., n).$

Then by an argument similar to that in (I,Lemma 7.9), we see that

$$R^n = \bigoplus_{i=1}^n M_i$$

and that the multiplication by $\rho(e_{ji})$

$$M_i \stackrel{\rho(e_{ji}).}{\to} M_j$$

give isomorphisms between the modules. Hence we see easily that M_0 satisfy the assumptions of the previous lemma. We conclude that M_1 is freely generated by single element v_1 . Then we put

$$v_j = \rho(e_{j1})v_1$$

and

$$G = (v_1 v_2 v_3 \dots v_n).$$

We may easily see that G plays the roles as expected.

References

 T. Y. Lam, Serre's conjecture (lecture notes in mathematics 635), Springer Verlag, 1978.