
TOPICS IN NON COMMUTATIVE ALGEBRAIC
GEOMETRY AND CONGRUENT ZETA FUNCTIONS
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1. A review

Let us first recall the definition. (See Part I for details.)

Definition 1.1. Let k be a field. Let n be a positive integer. A Weyl
algebra An(k) over a commutative ring k is an algebra over k gener-
ated by 2n elements {γ1, γ2, . . . , γ2n} with the “canonical commutation
relations”

(CCR) [γi, γj](= γiγj − γjγi) = hij (1 ≤ i, j ≤ 2n).

Where h is a non-degenerate anti-Hermitian 2n × 2n matrix of the
following form.

(hij) =

(

0 −1n

1n 0

)

.

Throughout this section, the letter h will always represent the matrix
above and the letter h̄ will always represent the inverse matrix of h.

1.1. perfect field.

Definition 1.2. A field k of characteristic p 6= 0 is called perfect
if the Frobenius homomorphism

k 3 x → xp ∈ k

is surjective.

1.2. A matrix representation of Weyl algebra. From now on in
this section we fix a prime number p and we assume k is a field of
characteristic p. We will simply write An instead of An(k).

Let us define operators(matrices) {µi}
2n
i=1 acting on pn-dimensional

vector space
V = k[x1, x2, . . . , xn]/(xp

1, x
p
2, . . . x

p
n)

by
µi = multiplication by xi

µi+n = ∂/∂xi.

}

i = 1, 2, . . . , n.

1
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Let

Sn = k[T1, T2, . . . , T2n−1, T2n]

be a polynomial ring of 2n-variables over k.
Then we have a faithful representation

Φ : An → Mpn(Sn)

of the Weyl algebra An by putting

Φ(γi) = Ti · 1pn + µi.

Furthermore, for any c = (c1, c2, . . . , c2n) ∈ k2n, we have by specializa-
tion the following representation of An.

Φc : An → Mpn(k)

by putting

Φc(γi) = ci · 1pn + µi.

We recall also that

Lemma 1.3. (Part I, Lemma 7.3) The center Zn of An is isomorphic
to a polynomial algebra with 2n indeterminates. Namely,

Zn = k[γp
1 , γ

p
2 , . . . , γ

p
2n].

Lemma 1.4. (Part I, Corollary 7.8) Let k be an algebraically closed
field of characteristic p 6= 0. Then every finite dimensional irreducible
representation α : An(k) → Endk(V ) of An(k) is equivalent to a repre-
sentation Φc for some c ∈ k2n.

Lemma 1.5. Let k be a field of characteristic p. If k contains infinite
number of elements, then:

⋂

c∈k2n

Ker(Φc) = 0.

Here is another thing we need to know.

Lemma 1.6. Φ gives a k-algebra isomorphism

Φ̂ : Sn ⊗Zn
An

∼= Mpn(Sn).

Proof. One may easily verify that we have a well-defined homo-
morphism given by

Φ̂ : Sn ⊗Zn
An 3 f ⊗ a 7→ fΦ(a) 3 Mpn(Sn).

For any j ∈ {1, 2, 3, . . . , 2n}, we have

Φ̂(1 ⊗ γj − Tj ⊗ 1) = µj.
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So the image Image(Φ̂) contains µj. Since we know that {µj}
2n
j=1 gen-

erates Mpn(k) as k-algebra (Part I, Corollary 7.10) , we conclude that

the map Φ̂ is surjective.
Now, both Sn ⊗Zn

An and Mpn(Sn) is free Sn-modules of rank p2n.

So the map Φ̂ is generically injective. (That means, if we take the
quotient field Q(Sn) of Sn and consider

1Q(Sn) ⊗ Φ̂ : Q(Sn) ⊗Sn
(Sn ⊗Zn

An) → Mpn(Q(Sn)).

then by an elementary theorem in linear algebra, we see that it is an
isomorphism.)

Since Sn (a polynomial algebra over Sn is an integral domain, Sn⊗Zn

An is Zn-torsion free. (That means,

Sn ⊗Zn
An → Q(Sn) ⊗Sn

(Sn ⊗Zn
An)

is injective.)

So we see that Φ̂ is injective.
�

1.3. Algebra endomorphisms and centers of Weyl algebras.

Lemma 1.7. Let k be a field of characteristic p 6= 0. For any k-
algebra endomorphism φ of An(k),

(1) Φc ◦ φ is a surjective homomorphism for any c ∈ k2n.
(2) φ(Zn(k)) ⊂ Zn(k).

Proof. We may assume that k is an algebraically closed field.
(1) The composition φc = Φc ◦ φ is a representation of An. By Lemma
1.4 we see that any irreducible sub representation of φc is equivalent
to Φc̄ for some c̄ ∈ k2n. By a dimensional argument, we conclude that
φc itself is equivalent to Φc̄. (In other words, there exists gc ∈ GLn(k)
such that

φc(x) = gcΦc̄(x)g−1
c (∀x ∈ An)

holds.) Thus φc is surjective as required.
(2) Let z ∈ Zn, x ∈ An. For any c ∈ k2n, we have (using the same
notation as above)

[φc(z), φc(x)] = φc([z, x]) = 0

Since we know by (1) that φc is surjective, we see that φc(z) belongs
to the center of Mpn(k). In particular for any y ∈ An, we have

Φc([φ(z), y]) = [Φc(φ(z)), Φc(y)] = [φc(z), Φc(y)] = 0.

Thus
[φ(z), y] ∈

⋂

c

Ker(Φc) = 0.



4 YOSHIFUMI TSUCHIMOTO

So φ(z) ∈ Z(An) = Zn as required.

Corollary 1.8. Let φ : An → An be a k-algebra endomorphism of
An. Then by restriction we obtain a homomorphism

φZn
: Zn → Zn.

Furthermore, if the base field k is perfect, then φ may be uniquely ex-
tended to its p-th root.

φSn
: Sn → Sn.

In precise, Let us write down φZn
like

φZn
(γp

j ) =
∑

I

fj,I(γ
p)I (j = 1, 2, . . . , 2n).

Then φSn
is given by the following formula.

φSn
(Tj) =

∑

I

(fj,I)
1/pT I (j = 1, 2, . . . , 2n).

Here comes a geometric interpretation of endomorphisms of Weyl
algebras.

Corollary 1.9. Let k be a perfect field of characteristic p 6= 0. Let
φ : An → An be a k-algebra endomorphism of An. Then we have a
matrix valued function G ∈ GLpn(Sn) and a morphism f : Spec(Sn) →
Spec(Sn) which enables the following diagram commute.

(*)

An
φ

−−−→ An

Φ





y
Φ





y

Mpn(Sn)
φ̄

−−−→ Mpn(Sn)

Where φ̄ is defined as

(**) φ̄(x) = Gf ∗(x)G−1.

We may write down the commutative diagram above as the following
equation.

Φ(φ(a)) = Gf ∗(Φ(a))G−1

Proof. Let us define

φZn
: Zn → Zn

and
φSn

: Sn → Sn

as in the previous Corollary. We put f = Spec(φSn
).

We have an well-defined Zn-algebra homomorphism

φSn
⊗ φ : Sn ⊗Zn

An → Sn ⊗Zn
An.
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By using the isomorphism in , we obtain a Zn-homomorphism

φ̄ = Φ̂(φSn
⊗ φ)Φ̂−1 : Mpn(Sn) → Mpn(Sn)

which is compatible with φ in the sense that it satisfies the commutative
diagram (*) of the statement.

It remains to prove that the map φ̄ is represented as (**). By pull-
back, we obtain an Sn-algebra homomorphism

ρ : Mpn(Sn) ∼= Sn ⊗φSn ,Sn
Mpn(Sn) 3 y ⊗ x 7→ yφ̄(x) ∈ Mpn(Sn).

Where the first isomorphism in the above line is the inverse of the
following Sn-algebra homomorphism.

Sn ⊗φSn ,Sn
Mpn(Sn) 3 y ⊗ x 7→ yf ∗(x) ∈ Mpn(Sn).

by an argument similar to that in (I,Lemma 7.9), we see that there
exists G ∈ GLpn(Sn) such that

ρ(x) = GxG−1 (∀y ∈ Mpn(Sn))

holds. (See appendix for the detail.)
�

1.4. appendix.

Definition 1.10. (temporary) Let R be a commutative ring. A
finitely generated R-module M is said to be projective if there exists
an R-module M ′ such that

M ⊕ M ′ ∼= R⊕n

for some n.

We shall argue homological algebra in much more detail later. So
the definition here is meant to be minimum. See a book on homological
algebra for “correct definition”.

Definition 1.11. Let R be a domain. The generic rank of M is the
rank of Q(R) ⊗R M over the quotient field Q(R).

Lemma 1.12. Let R be a commutative unique factorization domain(UFD).
Suppose an R module M satisfies the following conditions.

(1) M is of generic rank 1.
(2) M is finitely generated.
(3) M is projective.

Then M is R-free of rank 1.
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Proof. (Essentially borrowed from [1]) Let K = Q(R) be the quo-
tient field of R.

Since M is projective and R is an integral domain, M is torsion free.
So

ι : M → M ⊗R K

is injective. Since M is of generic rank 1, M ⊗R K is isomorphic to K.
as a K-module. We may thus assume that M ⊂ K. Since M is finitely
generated, we may further assume that M ⊂ R.

Now, Let us paraphrase the condition that M being projective. First
of all, the condition is equivalent to an existence of R-module homo-
morphisms

f : M → Rn, g : Rn → M

such that g ◦ f = id. Secondly, we may then represent f, g in matrix
form.

f(m) =









f1(m)
f2(m)

...
fn(m)









, g(









r1

r2
...
rn









) = (g1, g2, g3, . . . , gn)









r1

r2
...
rn









f : M → Rn, g : Rn → M

such that g ◦ f = id.
Thirdly, each fi, gi is represented by a linear map from K to K. That

means, by an element of K.

f =









a1

a2
...

an









, g = (b1, b2, b3, . . . , bn)

We may obtain several properties of {ai}, {bj}:

(i) g(Rn) ⊂ M implies bi ∈ M ⊂ R(∀i).
(ii) g ◦ f : Rn → Rn implies aibj ∈ R(∀i∀j).
(iii) g(Rn) ⊂ M implies bi ∈ M(∀i).
(iv) g(Rn) = M implies

∑

i Rbi = M .
(v) g ◦ f = id implies

∑

i biai = 1.

Let us write

ai =
li
mi

(gcd(li, mi) = 1).

R 3 aibj =
libj

mi
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Since li and mi are coprime, we conclude that bj is divisible by mi. Let
us denote by l the largest common multiple of m1, m2, . . . , mn.

l|bj

By (iv) we see M ⊂ lR.
By (v) we see

l = l
∑

i

biai =
∑

i

bili
l

mi
∈

∑

i

biR ⊂ M.

Thus M ⊃ lR. So M = lR. �

Lemma 1.13. Let R be a commutative UFD. Then for any R-algebra
homomorphism

ρ : Mn(R) → Mn(R),

there exits an element G ∈ GLn(R) such that

ρ(x) = GxG−1

holds for any x ∈ Mn(R).

Proof. Let us denote by eij ∈ Mn(R) the matrix element. Let us
consider R-modules

Mi = ρ(eii)R
n (i = 1, 2, 3, . . . , n).

Then by an argument similar to that in (I,Lemma 7.9), we see that

Rn =

n
⊕

i=1

Mi.

and that the multiplication by ρ(eji)

Mi
ρ(eji).
→ Mj

give isomorphisms between the modules. Hence we see easily that M0

satisfy the assumptions of the previous lemma. We conclude that M1

is freely generated by single element v1. Then we put

vj = ρ(ej1)v1.

and
G = (v1v2v3 . . . vn).

We may easily see that G plays the roles as expected. �
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