next up previous
Next: exterior derivation on general Up: exterior derivation Previous: exterior derivation

exterior derivation on 1-forms

Let us define an $ A$ -module homomorphism

$\displaystyle \psi:B\otimes_A B \to \Omega^2_{B/A}
$

by the following formula.

$\displaystyle \psi(b_1\otimes b_2)=d b_1 \wedge d b_2.
$

Then we may easily see that

$\displaystyle \psi((1\otimes f -f \otimes 1)(1\otimes g -g \otimes 1))=0.
$

Thus $ \psi$ defines a unique $ A$ -module homomorphism

$\displaystyle d_1:\Omega^1_{B/A}=I_\Delta/I_\Delta^2
\ni f d g\mapsto d f \wedge d g \in \Omega^2_{B/A}
$



2007-12-26