next up previous
Next: exterior derivation Up: Topics in Non commutative Previous: functoriality

exterior algebras

Let $ A$ be a commutative algebra. Let $ M$ be an $ A$ -module.

The tensor algebra $ \otimes_A M$ is defined as

$\displaystyle \otimes_A M= A \oplus (\bigoplus_{j=1}^\infty M^{\otimes j}).
$

It is a (non commutative) $ \mathbb{N}$ -graded algebra 1 over $ A$ . Let us define the following two sided ideal of $ \otimes_A M$ .

$\displaystyle I_{\text{symmetric}}=(x\otimes y -y\otimes x ; x\in M,y\in M).
$

$\displaystyle I_{\text{exterior}}=(x\otimes x ; x\in M).
$

Then we define

$\displaystyle S_A M=(\otimes_A M)/I_{\operatorname{symmetric}}
$

$\displaystyle \wedge_A M=(\otimes_A M)/I_{\operatorname{exterior}}
$



2007-12-26