next up previous
Next: interior derivation Up: some linear algebra Previous: even and odd derivations.

pairing of exterior algebras

Let $ A$ be a commutative ring. Let $ M,N$ be $ A$ -modules. Assume there is a $ A$ -bi-linear pairing

$\displaystyle \langle \bullet, \bullet \rangle :
M \times N \to A.
$

Then we define a pairing of tensor algebras

$\displaystyle \langle \bullet, \bullet \rangle_{\wedge} :
\otimes_A M \times \otimes_A N \to A
$

defined by the following equation.

$\displaystyle \langle v_1\otimes v_2\otimes \dots \otimes v_s,
w_1\otimes w_2\o...
...w_j\rangle)_{i j} ) & (\text{if }s=t) \\
0 & (\text {if }s\neq t )
\end{cases}$

(The reader may prefer the expression

      $\displaystyle \langle v_1\otimes v_2\otimes \dots \otimes v_s, w_1\otimes w_2\otimes \dots \otimes w_s \rangle_\wedge$
    $\displaystyle =$ $\displaystyle \sum_{\sigma \in \mathfrak{S}_s} \operatorname{sgn}(\sigma) \lang...
...\dots \langle v_{s-1}, w_{\sigma(s-1)}\rangle \langle v_s, w_{\sigma(s)}\rangle$

rather than the expression above which uses a determinant.)

Then it is easy to see that the pairing above descends to define a pairing of exterior algebras

$\displaystyle \langle \bullet, \bullet \rangle_{\wedge} :
\wedge_A M \times \wedge_A N \to A.
$



2007-12-26