next up previous
Next: About this document ...

    

Âå¿ô³Ø II 12 ¤Î²òÅú

ÌäÂê 12.1   $A=\mbox{${\Bbb R}$ }[X,Y,Z]$ ¤«¤é $A$ ¤Ø¤Î´Ä½àƱ·Á¼ÌÁü $\phi$ ¤ò

\begin{displaymath}\phi(X)=XZ,\quad \phi(Y)=(YZ),\quad \phi(Z)=Z
\end{displaymath}

¤ÇÄêµÁ¤¹¤ë¡£¤µ¤é¤Ë¡¢$A$ ¤Î¥¤¥Ç¥¢¥ë $I$ ¤ò¡¢

\begin{displaymath}I=(X^2+Y^2-1)
\end{displaymath}

¤ÇÄêµÁ¤¹¤ë¡£¤³¤Î¤È¤­¡¢
1.
$V(I)$ ¤Î¥°¥é¥Õ¤Î³µ·Á¤ò½ñ¤­¤Ê¤µ¤¤¡£
2.
$\psi=\pi\circ\phi: A \to A/I $ ¤Î³Ë¤òµá¤á¤Ê¤µ¤¤¡£ ¤¿¤À¤· $\pi:A\to A/I$ ¤Ï¼«Á³¤Ê¼Í±Æ ($p$ ¤ËÂФ·¤Æ¤½¤Î¥¯¥é¥¹ $[p]$¤òÂбþ¤µ¤»¤ë½àƱ·¿)¤Ç¤¢¤ë¡£
3.
${}^a\psi$ ¤ÎÁü¤Î³µ·Á¤ò½ñ¤­¤Ê¤µ¤¤¡£

(Åú¤¨)

(1) ¤½¤Î·Á¤Ï±ßÅû¤Ç¤¢¤Ã¤Æ¡¢±ß¤Ç¤Ï¤Ê¤¤¡£

\includegraphics[scale=0.5]{tube.ps}

(2) $\operatorname{Ker}(\psi)$ ¤Ï

\begin{displaymath}\operatorname{Ker}(\psi)=\{f(X,Y,Z)\in \mbox{${\Bbb R}$}[X,Y,Z]; f(XZ,YZ,Z)\in (X^2+Y^2-1)\}
\end{displaymath}

¤Ç¤¢¤ë¡£ÌäÂê¤Ï¤³¤ì¤Î·×»»¤Ç¤¢¤ë¤¬¡¢ ¤Þ¤º $f_0(X,Y,Z)=X^2+Y^2-Z^2$ ¤¬ $\operatorname{Ker}(\psi)$ ¤ËÆþ¤ë¤³¤È¤ò³Îǧ¤·¤ÆÍߤ·¤¤¡£ ¤¸¤Ã¤µ¤¤¡¢

\begin{displaymath}f_0(XZ,YZ,Z)=(XZ)^2+(YZ)^2-Z^2=(X^2+Y^2-1)Z^2
\end{displaymath}

¤¬À®¤êΩ¤Ä¤«¤é¤Ç¤¢¤ë¡£ ¤·¤¿¤¬¤Ã¤Æ¡¢ $\operatorname{Ker}(\psi)\supset (f_0)$. $\operatorname{Ker}(\psi)$ ¤È $(f_0)$ ¤È¤¬¼ÂºÝ¤ËÅù¤·¤¤¤³¤È¤ò¼¨¤¹¤¿¤á¤Ë¤Ï¡¢ $f_0$ ¤Ë¤è¤ë³ä¤ê»»¤ò³èÍѤ¹¤ë¤Î¤¬¤è¤¤¡£ ¤¹¤Ê¤ï¤Á¡¢ $g\in \operatorname{Ker}(\psi)$ ¤òǤ°Õ¤Ë¤È¤ë¤È¡¢ $g$ ¤ò $f_0$ ¤Ç(ÊÑ¿ô $X$ ¤ËÃåÌܤ·¤Æ)³ä¤ë¤³¤È¤Ë¤è¤ê¡¢ $q,r\in \mbox{${\Bbb R}$ }[X,Y,Z] $ ¤Ç¡¢

\begin{displaymath}g=f_0q+r, \quad
\end{displaymath}

¤ò¤ß¤¿¤·¡¢ $r$ ¤Î $X$ ¤Ë´Ø¤¹¤ë¼¡¿ô¤Ï $2$ °Ê²¼¡¢¤È¤Ê¤ë¤â¤Î¤¬Â¸ºß¤¹¤ë¡£ $r$ ¤Ï $X$ ¤Ë´Ø¤·¤Æ $2$ ¼¡°Ê²¼¤Ê¤Î¤À¤«¤é¡¢¤³¤ì¤ò

\begin{displaymath}r(X,Y,Z)=r_1(Y,Z)X+r_0(Y,Z)
\end{displaymath}

¤È¤¤¤¦¶ñ¹ç¤Ë½ñ¤¤¤Æ¤ß¤ì¤Ð¡¢

\begin{displaymath}0=\psi(g)=\psi(r)=r_1(YZ,Z)XZ+r_0(YZ,Z)
\end{displaymath}

$X$ ¤Î·¸¿ô¤ËÃåÌܤ·¤Æ¡¢Â¿¹à¼°¤È¤·¤Æ $r_1=0$¡£ ƱÍͤˤ·¤Æ¡¢Â¿¹à¼°¤È¤·¤Æ $r_0=0$¤òÆÀ¤ë¤³¤È¤¬¤Ç¤­¡¢¤«¤¯¤·¤Æ $g=f_0q$. ¤¹¤Ê¤ï¤Á $g\in (f_0)$ ¤¬¾ÚÌÀ¤Ç¤­¤ë¤ï¤±¤À¡£

(3) ¹ÖµÁ¤Ç²¿ÅÙ¤â¤ä¤Ã¤¿¤è¤¦¤Ë¤³¤ì¤Ï±ß¿í¤Ç¤¢¤ë¡£

\includegraphics[scale=0.5]{cone.ps}

ÌäÂê 12.2   $B=\mbox{${\Bbb R}$ }[X,Y]$ ¤«¤é $B$ ¤Ø¤Î´Ä½àƱ·Á¼ÌÁü $\varphi$ ¤ò

\begin{displaymath}\varphi(X)=XY,\qquad \varphi(Y)=Y
\end{displaymath}

¤ÇÄêµÁ¤¹¤ë¡£¤µ¤é¤Ë¡¢$B$ ¤Î¥¤¥Ç¥¢¥ë $J$ ¤ò¡¢

\begin{displaymath}J=(Y-X^2+1)
\end{displaymath}

¤ÇÄêµÁ¤¹¤ë¡£¤³¤Î¤È¤­¡¢
1.
ÌäÂê10.1 ¤Ë¤Ê¤é¤Ã¤Æ ${}^a\varphi(S)$ ¤ò¥°¥é¥Õ¤Ë½ñ¤­¤Ê¤µ¤¤¡£ ¤¿¤À¤·¡¢

\begin{displaymath}S=\{ (x,y)\in \mbox{${\Bbb R}$}^2; x \in {\mbox{${\Bbb Z}$}}\text{ or } y \in {\mbox{${\Bbb Z}$}}\}
\end{displaymath}

¤Ç¤¢¤ë¡£
2.
$V(J)$ ¤Î¥°¥é¥Õ¤Î³µ·Á¤ò½ñ¤­¤Ê¤µ¤¤¡£
3.
$\rho=\pi\circ\varphi: B \to B/J $ ¤Î³Ë¤òµá¤á¤Ê¤µ¤¤¡£ ¤¿¤À¤· $\pi:B\to B/J$ ¤Ï¼«Á³¤Ê¼Í±Æ ($p$ ¤ËÂФ·¤Æ¤½¤Î¥¯¥é¥¹ $[p]$¤òÂбþ¤µ¤»¤ë½àƱ·¿)¤Ç¤¢¤ë¡£
4.
${}^a\rho$ ¤ÎÁü¤Î³µ·Á¤ò½ñ¤­¤Ê¤µ¤¤¡£

(²òÅú)

(1) ¾Êά¤¹¤ë¤¬¡¢¡Ö³Ê»Ò¡×¤ÎÁü¤Ê¤ó¤À¤«¤é°ì±þ¤½¤ì¤Ê¤ê¤Î¤â¤Î¤Ë¤Ê¤é¤Ê¤¤¤È ´Ö°ã¤¤¤Ê¤Î¤Ëµ¤¤Å¤¤¤ÆÍߤ·¤¤¡£ ľÀþ¤ÎÁü¤òðǰ¤ËÄɤ¤µá¤á¤ì¤ÐÎɤ¤¤Î¤Ç´Êñ¤Ê¤Ï¤º¤Ç¤¢¤ë¡£

(2) ¤³¤ì¤Ï¤ä¤µ¤·¤¤¤À¤í¤¦¡£ÊüʪÀþ¤Ç¤¢¤ë¡£ $S$ ¤È(2)¤òƱ»þ¤Ë½ñ¤­¹þ¤à¤È¡¢¼¡¤Î¤è¤¦¤Ê¥°¥é¥Õ¤Ë¤Ê¤ë¡£

\includegraphics[scale=0.5]{parabora.ps}

(3) $T=XY,U=Y$ ¤È¤ª¤¤¤Æ¡¢ $X,Y$¤Î´Ø·¸¼° $Y-X^2+1=0$ ¤«¤é $T,U$ ¤Î´Ø·¸¼°¤ò ·×»»¤·¡¢ºÇ¸å¤Ë $T,U$ ¤ò $X,Y$ ¤ËÃÖ¤­´¹¤¨¤ì¤Ð¤è¤¤¡£ º£¤Î¾ì¹ç¤Ï·Á¼°Åª¤Ë $X=T/U,Y=U$ ¤È¤¤¤¦¶ñ¹ç¤ËµÕ¤Ë²ò¤±¤ë¤«¤é³Ú¤Ç¤¢¤ë¡£ ¤¿¤À¤·¡¢·Á¼°Åª¤Ê·×»»¤ò¤·¤¿¤¢¤È¤Ë¤ÏÌäÂê12.1¤Î(2)¤Î²òÀâ¤Ç½Ò¤Ù¤¿¤è¤¦¤Ê¥Á¥§¥Ã¥¯¤ò ¤·¤Æ¤ª¤¯¤Ù¤­¤Ç¤¢¤ë¡£

$(X^2-Y^2-Y^3)$

(4) ¤³¤Î¥°¥é¥Õ¤â¹ÖµÁ¤Ç½ñ¤¤¤¿¤³¤È¤¬¤¢¤ë¡£ ¤·¤¿¤¬¤Ã¤Æ¾Ü¤·¤¤½ñ¤­Êý¤Ï¾Êά¤¹¤ë¡£ (1)¤È(3)¤È¤òƱ»þ¤Ë½ñ¤¯¤È¡¢ ¼¡¤Î¤è¤¦¤Ë¤Ê¤ë¡£ ¤³¤ì¤òÀè¤Î¥°¥é¥Õ¤ÈÈæ¤Ù¤ë¤È²¿¤¬µ¯¤³¤Ã¤Æ¤¤¤ë¤«Ê¬¤«¤ê¤ä¤¹¤¤¤À¤í¤¦¡£ ¥°¥é¥Õ¤ò¥¹¥À¥ì¤Ë½ñ¤¤¤Æ¤ª¤¤¤Æ¡¢ ¥¹¥À¥ì¤Î²¼¤ÎÊÕ¤ò¤Ò¤Ã¤¯¤êÊÖ¤¹(¥¹¥À¥ì¤ÏÅöÁ³¤Ò¤Í¤ê¤¬²Ã¤ï¤ë)¤È ¤Á¤ç¤¦¤É¤³¤Î¤è¤¦¤Ê·Á¤Ë¤Ê¤ë¡£¡

\includegraphics[scale=0.5]{singular.ps}



Yoshifumi Tsuchimoto
2001-07-24