
TOPICS IN NON COMMUTATIVE ALGEBRAIC
GEOMETRY AND CONGRUENT ZETA FUNCTIONS

(PART III). SUPPLEMENTARY RESULTS ON
COMMUTATIVE ALGEBRAIC GEOMETRY.

YOSHIFUMI TSUCHIMOTO

1. quasi coherent sheaves

Definition 1.1. An OX -module F on a scheme X is quasi coherent
if there exists an affine open covering

{Uλ = Spec(Aλ)}λ∈Λ

of X such that for each λ ∈ Λ, F|Xλ
is isomorphic to a OSpec(Aλ)⊗Aλ

M
for some A-module M .

It is easy to see that

Lemma 1.2. Let f : X → Y be a morphism of schemes. For any
quasi coherent sheaf G on Y , f ∗(G) is quasi coherent.

2. K-valued points and fibers

Definition 2.1. Let K be a field. a K-valued point P of a scheme
X is a morphism

ιP : Spec(K) → X

of schemes. Let F be a quasi coherent OX-module. Then a fiber of F

on a K-valued point P is the pullback ι∗P (F). We often identify it with
a K-vector space

ι∗P (F)(K).

Example 2.2. Let X = Spec(A) be an affine scheme. Then a K-
valued point P of X is given by a ring homomorphism

evalP : A→ K.

a quasi coherent OX -module F is given by an A-module M .

F ∼= OX ⊗A M

The fiber of F is then given by

ι∗P (OX ⊗A M) = K ⊗A M.
1
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In general, we study quasi coherent sheaves on a scheme from three
different point of view. Namely, we may study them

(1) section wise,
(2) stalk wise, or
(3) fiber wise.

Each view point is useful.

3. locally free sheaves of finite rank

Definition 3.1. Let (X,OX) be a ringed space. An OX -module F

on X is said to be

(1) free if it is isomorphic to a direct sum of OX .
(2) locally free if there exists an open covering {Uλ} of X such

that F|Uλ
is free for all λ.

Definition 3.2. Let (X,OX) be a ringed space. Let F be a locally
free sheaf of rank r on X. By definition, there exists an open covering
{Uλ}λ∈Λ of X such that F|Uλ

is free for all λ ∈ Lambda. In other words,
there is an isomorphism

φλ : F ∼= Or
X .

Such φλ is called a local trivialization of F.
Given a set of trivializations {φλ}λ∈Λ of F, We notice that for any

λ, µ ∈ Λ there exists a GLr-valued function

g : Uλµ → GLr

such that for any section s ∈ F(Uλµ), we have

φλ(s) = gλµφµ(s)

We call {gλµ} the transition functions.

Lemma 3.3. The transition functions as in Definition above satisfy
the following cocycle conditions.

(1) gλλ = id.
(2)

gλµgµν = gλν .

4. Ultra filter

Definition 4.1. A set F of subsets of a set X is called a filter on
X if the following conditions are satisfied.

(1) X ∈ F, ∅ /∈ F.
(2) F ∋ A,B =⇒ A ∩B ∈ F.
(3) F ∋ A, A ⊂ A1 ⊂ X =⇒ A1 ⊂ F.
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Definition 4.2. A maximal filter on a set X is called an ultra
filter on X.

Those readers who are not familiar with the arguments are invited
to read for example [15] or the book of Bourbaki [2].

Lemma 4.3. Let U be a filter on a set X The following statements
are equivalent.

(1) U is an ultrafilter. That means, a maximal filter.
(2) for any subset S ⊂ X, we have either S ∈ U or ∁S ∈ U

Definition 4.4. A principal filter on a set X is an ultra filter of the
form Fa = {S ⊂ X|a ∈ S} where a is an element of X. A ultrafilter
which is not principal filter is called non-principal.

Lemma 4.5. For any ultrafilter U, the following statements are equiv-
alent.

(1) U is principal.
(2) U is not free. That means, ∩U∈UU 6= ∅.
(3) There exists a member E of U which is a finite set (#E <∞).
(4) There exists a co-finite subset Y of X (that means, #(X \Y ) <

∞,) such that Y /∈ U.

In particular, if U is a non-principal ultrafilter on a set X, then any
co-finite subset Y of X of is a member of U.

An ultrafilter U on a set X may be identified with a point of Stone-
Čech compactification of (X with discrete topology). A non principal
ultrafilter is identified with a boundary point.

Definition 4.6. Let K be a number field with the ring of integers
O. Let U = {Uλ} be a non-principal ultrafilter on the set Spm(O) of
all primes of O of height 1.

Let IU be an ideal of
∏

p∈Spm(O) O/p defined as follows:

IU =







(fp)p∈Spm(O) ∈
∏

p∈Spm(O)

(O/p)

∣

∣

∣

∣

∣

∣

∃U ∈ U such that fp = 0 for ∀p ∈ U







Then we define a ring KU as follows:

KU =





∏

p∈Spm(O)

(O/p)



 /IU

We denote by πU the canonical projection from
∏

(O/p) to KU.

Lemma 4.7. KU is a field of characteristic 0.
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Proof. Indeed, let f = πU((fp)) be a non zero element in KU. Let
E1 = {p ∈ Spm(O); fp 6= 0}. Then for any E ∈ U, intersection E ∩ E1

is non empty. Maximality of U now implies that E1 itself is a member
of U. The inverse g = (gp) of f in KU is given by the following formula.

gp =

{

f−1 if p ∈ E1

0 otherwise

If n = 0 in KU for a positive integer n, then there exists E0 ∈ U such
that n ∈ ∩p∈E0

p. On the other hand, as we have mentioned in Lemma
4.5 above, being a member of a non-principal filter U, E0 cannot be
a finite set. This is a contradiction, since non-zero member n in O
has only finite “zeros” on the “arithmetic curve” Spm(O). Thus the
characteristic of KU is zero.

�

The definition above is partly inspired by works of Kirchberg (See
[12] for example.) We would like to give a little explanation on πU. We
regard it as a kind of ‘limit’. If we are given a member U of U and
we have an element, say, hp of O/p for each primes p ∈ U , then, by
assigning arbitrary element to ‘exceptional’ primes (that means, primes
which are not in U), we may interpolate h and consider

πU((hp)).

The element (’limit’) does not actually depend on the interpolation.
Thus we may refer to the element without specifying the interpolation.
In particular, this applies to the case where we have hp for almost all
primes p. The same type of argument applies for polynomials. We
summarize this in the following Lemma.

Lemma 4.8. Suppose we have a co-finite subset Y of Spm(O) and
a collection {Fp}p∈Y ∈ (O/p)[T1, T2, . . . , Tn, U1, U2, . . . , Un] of polyno-
mials. Assume we have a bound d for the degrees of the polynomials.
That means,

deg(Fp) ≤ d (∀p ∈ Y ).

Then we may define the ‘limit’

πU((Fp))

by taking ‘limit’ of each of the coefficients. The same arguments also
applies for polynomial maps.
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For any non-principal ultra filter U on P = (prime numbers), We
may consider the following ring.

Q
(∞)
U

=
∏

p

Fp∞/(U で 0)

It turns out that,

Lemma 4.9. (1) Q
(∞)
U

is an algebraically closed field of charac-
teristic 0.

(2) Q
(∞)
U

has the same cardinality as C.

Thus we conclude that

Proposition 4.10. As an abstract field,

Q
(∞)
U

∼= C.

5. Elementary category theory

We need to develop a fine theory of (n-)category theory in this lec-
ture. But that will take time. Meanwhile, we use an easy part of
elementary category theory as a convenient language.

Definition 5.1. A category C is a collection of the following data

(1) A collection Ob(C) of objects of C.
(2) For each pair of objects X, Y ∈ Ob(C), a set

HomC(X, Y )

of morphisms.
(3) For each triple of objects X, Y, Z ∈ Ob(C), a map(“composition

(rule)”)

HomC(X, Y ) × HomC(Y, Z) → HomC(X,Z)

satisfying the following axioms

(1) Hom(X, Y ) ∩ Hom(Z,W ) = ∅ unless (X, Y ) = (Z,W ).
(2) (Existence of an identity) For any X ∈ Ob(C), there exists an

element idX ∈ Hom(X,X) such that

idX ◦f = f, g ◦ idX = g

holds for any f ∈ Hom(S,X), g ∈ Hom(X, T ) (∀S, T ∈ Ob(C)).
(3) (Associativity) For any objectsX, Y, Z,W ∈ Ob(C), and for any

morphisms f ∈ Hom(X, Y ), g ∈ Hom(Y, Z), h ∈ Hom(Z,W ),
we have

(f ◦ g) ◦ h = f ◦ (g ◦ h).
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5.1. universe. In order to deal with some set theoretical difficulties,
we assume the existence of sufficiently many universes.

Definition 5.2. A universe U is a nonempty set satisfying the
following axioms:

(1) If x ∈ U and y ∈ x , then y ∈ U .
(2) If x, y ∈ U , then {x, y} ∈ U .
(3) If x ∈ U , then the power set 2x ∈ U .
(4) If {xi|i ∈ I} is a family of elements of U indexed by an element

I ∈ U , then ∪i∈Ixi ∈ U .

Lemma 5.3. Let U be an universe. Then the following statements
hold.

(1) If x ∈ U , then {x} ∈ U .
(2) If x is a subset of y ∈ U , then x ∈ U .
(3) If x, y ∈ U , then the ordered pair (x, y) = {{x, y}, x} is in U .
(4) If x, y ∈ U , then x ∪ y and x× y are in U .
(5) If {xi|i ∈ I} is a family of elements of U indexed by an element

I ∈ U , then we have
∏

i∈I xi ∈ U .

In this text we always assume the following.

�

�

�

�
For any set S, there always exists a universe U such that S ∈ U .

The assumption above is related to a “hard part” of set theory. So
we refrain ourselves from arguing the “validity” of it.

Definition 5.4. Let U be a universe.

(1) A set S is said to be U-small if it is an element of U .
(2) A category C is said to be U-small if

(a) Ob(C) is a U -small set.
(b) For any X, Y ∈ Ob(C), Hom(X, Y ) is U -small.

Note: The treatment in this subsection owes very much on those of
wikipedia:

http://en.wikipedia.org/wiki/Small_set_(category_theory)

and planetmath.org:

http://planetmath.org/encyclopedia/Small.html

but the treatment here differs a bit from the treatments given there.
We also refer to [13] as a good reference.
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5.2. examples of categories. In this section we fix a sufficiently large
universe U . For some of readers it may be happier to neglect the term
“U-small”.

Example 5.5. The category (SETS) of U -small sets.

Ob(SETS) = {U -small sets}.

For any X, Y ∈ Ob(SETS), we put

Hom(SETS)(X, Y ) = (the set of all maps from X to Y .)

Example 5.6. The category (GROUPS) of U -small groups (that
means, groups that are U -small as sets).

Ob(GROUPS) = {U -small groups}.

For any X, Y ∈ Ob(GROUPS), we put

Hom(GROUPS)(X, Y ) = (the set of all group homomorphisms from X to Y .)

Likewise, we may easily define categories such as the category (RINGS)
of U -small-rings, the category (R−ALG) of algebras over a ring R, the
category (k − VS) of U -small vector spaces over a field k, and so on.

Example 5.7. The category (TOP) of U -small topological space

Ob(GROUPS) = {U -small topological space}.

For any X, Y ∈ Ob(TOP), we put

Hom(TOP)(X, Y ) = (the set of all continuous maps from X to Y .)

One may also consider the category of C∞-manifolds, the category
of C1-manifolds, and so on.

Of course, the category of schemes (with morphisms the ones we
defined in the previous part) is very important category for us.

6. fiber product

6.1. definition of a fiber product.

Definition 6.1. Let C be a category. Let X, Y, Z be objects of C.
Assume that morphisms f : X → Z and g : Y → Z are given. Then
the fiber product X ×Z Y (more precisely,

X ×f,Z,g Y

) is defined as an object W together with morphisms

p : W → X, q : W → Y

such that
p ◦ f = q ◦ g
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which is universal in the following sense.
For any W1 ∈ Ob(C) together with morphisms

p1 : W1 → X, q1 : W1 → Y

such that
p1 ◦ f = q1 ◦ g,

there exists a unique morphism h : W1 →W such that

p ◦ h = p1, q ◦ h = q1

holds.

Using the usual universality argument we may easily see that the
fiber product is, if exists, unique up to a unique isomorphism.

Example 6.2. Fiber products always exists in the category (TOP)
of topological spaces. Namely, let X, Y, Z ∈ Ob(TOP). Assume that
morphisms(=continuous maps) f : X → Z and g : Y → Z are given.
Then we consider the following subset S of X × Y .

S =(f, g)−1(∆Z)(⊂ (X × Y ))

={(x, y) ∈ X × Y ; f(x) = g(y)}.

We equip the set S with the relative topology. Then S plays the role of
the fiber product X ×Z Y . (The morphisms p, q being the (restriction
of) projections.)

6.2. tensor products of algebras over a commutative ring.

Lemma 6.3. Let A be a commutative ring. Let B,C be A-algebras.
Then the followings are true.

(1) The module
B ⊗A C

carries a natural structure of A-algebra.
(2) There exits A-algebra homomorphisms

ιB : B ∋ b 7→ b⊗ 1 ∈ B ⊗A C, ιC : C ∋ c 7→ 1 ⊗ c ∈ B ⊗A C.

(3) The triple (B⊗AC, ιB, ιC) has the following universal property:
For any A-algebra D and for any A-algebra homomorphisms
f : B → D and g : C → D, there exists a unique A-algebra
homomorphism

h : B ⊗A C → D

such that f = h ◦ ιB and g = h ◦ ιC .

Proof. An easy exercise.
�
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Note that in the situation of the above Lemma, if A is non commu-
tative, then B ⊗A C may not have a natural structure of ring. Sooner
or later one needs to face this fact.

6.3. fiber products of schemes. One may easily see that the defini-
tion of the fiber product is the “opposite” of the property of the tensor
products shown in the previous subsection. In more accurate terms,

Lemma 6.4. Fiber products always exists in the category (Affine Schemes)
of affine schemes.

Namely, let X = Spec(A1), Y = Spec(A2), Z = Spec(B) be affine
schemes. Assume that morphisms f : X → Z and g : Y → Z are
given. Then we have

Spec(A1) ×f,Spec(B),g Spec(A2) ∼= Spec(A1 ⊗Γ(f),B,Γ(g) A2)

(If the morphisms and homomorphisms involved are clear from the
context, we often abbreviate the above equation as:

Spec(A1) ×Spec(B) Spec(A2) ∼= Spec(A1 ⊗B A2)

by the abuse of language.)

Remark 6.5. By using “gluing lemma” for schemes, we may also
prove that fiber products always exists in the category of schemes. We
omit the proof. See for example [11] for details. (The author (Tsuchi-
moto) has often forgot to say (sorry), but of course, Grothendieck’s
enormous works including EGA1[4],EGA2[5],EGA3[6][7] EGA4[8][9][10]
and SGA are the primary source for the whole of this talk.)

So far, we have not developed enough theory of a general schemes
except for the affine case. In local theories, the affine case suffices and
the generalization to general schemes is fairly easy. Due to the lack
of time, we omit detailed arguments. For more detailed account, see
EGA or Iitaka [11]

Note that the universality of the fiber product may be interpreted
as the following way.

Lemma 6.6. Let C be a category. Let X, Y, Z ∈ Ob(C), f ∈ HomC(X,Z), g ∈
HomC(Y, Z). Assume that the fiber product X ×Z Y exists. Then we
have

Hom(W1, X) ×Hom(W1,Z) Hom(W1, Y ) ∼= Hom(W1, X ×Z Y )

Corollary 6.7. Let X, Y, Z be schemes. Let f : X → Z, g : Y → Z
be morphisms. Then we have

X(K) ×Z(K) Y (K) ∼= (X ×Z Y )(K)
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for any field K. (Recall that for a scheme X, X(K) denotes the set of
K-valued points of K.)

7. flatness

We define here notion of “flatness”. For non commutative algebras,
we need to distinguish “left-flat” and “right-flat”. Ironically, Bour-
baki’s book “commutative algebra”[1] is one of the best source available
on this subject. For the time being, we define flatness for commutative
algebras only.

Definition 7.1. Let A be a commutative rings. An A-module M
is flat if for any exact sequence

0 → N1 → N2 → N3 → 0,

a sequence

0 →M ⊗A N1 →M ⊗A N2 → M ⊗A N3 → 0

is also exact.

Note that we have the following

Lemma 7.2. Let A be a commutative rings. Let M be an A-module.
Then for any exact sequence

0 → N1
f1

→ N2
f2

→ N3 → 0

of A-modules, a sequence

M ⊗A N1
idM ⊗f1

→ M ⊗A N2
idM ⊗f2

→ M ⊗A N3 → 0

is also exact. Thus M is flat over A if and only if for any module N2

and for any submodule N1 of N2, the map

M ⊗A N1
idM ⊗ inclusion

−→ M ⊗A N2

is injective.

Proof. Given any element
∑

imi ⊗ ni of M ⊗N3, we take a lift n̂i

of ni to N2. Then we have

(idM ⊗f2)(
∑

i

mi ⊗ n̂i) =
∑

i

mi ⊗ ni.

Thus the map idM ⊗f2 is surjective. To see the exactness in the middle,
we first notice that

(idM ⊗f2) ◦ (idM ⊗f2) = idM ⊗(f2 ◦ f1) = 0.

Thus id⊗f2 yields an A-module homomorphism

φ : (M ⊗A N2)/(M ⊗A N1) →M ⊗A N3.
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On the other hand, for any element (m,n) ∈M ×N3, we take a lift n̂
of n to N2 and define

α : M ×N3 ∋ (m,n) 7→ [m⊗ n̂] ∈ (M ⊗A N2)/(M ⊗A N1).

We may easily check that α is well-defined (independent of the choice
of the lift n̂ of n) and is A-bilinear. So α defines an A-module homo-
morphism

ψ : M ⊗N3 ∋ (m⊗ n) 7→ [m⊗ n̂] ∈ (M ⊗A N2)/(M ⊗A N1).

Then it is easy to show that the homomorphisms φ and ψ are inverse
to each other.

(See for example [14, Appendix A] or [1].)
�

Definition 7.3. An A-algebra B is flat if it is flat as an A-module.
A morphism of affine schemes is flat if the corresponding ring ho-

momorphism is flat.

Example 7.4. Z/3Z is not flat over Z. Indeed, we consider an exact
sequence

0 → Z
×3
→ Z → Z/3Z → 0.

Then by tensoring with Z/3Z we obtain a sequence

0 → Z/3Z
×3
→ Z/3Z → Z/3Z → 0

which is not exact.
Let us view it as a homomorphism φ : Z̃

3
→ Z̃ of quasi coherent sheaf

on Spec(Z) with the keyword “section wise” and “fiber wise” in mind.

(1) φ is injective if and only if it is injective section wise. Thus our
φ is injective.

(2) φ is “not injective” at the fiber of the point 3.

Example 7.5. Let k be a field. Then a ring homomorphism k[X] →
k[X, Y ]/(XY, Y 2) is not flat. The reason is almost the same with the
one above. (We consider an exact sequence

0 → k[X]
·X
→ k[X] → k[X]/Xk[X] → 0.

In this example, an embedded prime (X, Y ) of I = (XY, Y 2) in k[X, Y ]
falls into the zero locus of X.)
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8. Various kind of morphisms.

8.1. affine morphisms.

Definition 8.1. Let X be a scheme. Let A be a quasi coherent
sheaf with an OX -bilinear multiplication so that it is a sheaf of (unital
associative) algebras. Then we may construct a scheme Spec(A) over
X. The morphism Spec(A) → X is called an explicit affine mor-
phism. A morphism which is isomorphic to an explicit affine morphism
so defined is called an affine morphism.

8.2. closed immersion.

Definition 8.2. Let X be a scheme. Let I be a quasi coherent sheaf
of ideal of OX . Then the scheme Spec(OX/I) (which is affine over X)
is called a closed subscheme of X. We often call it V (I).

Definition 8.3. A morphism X → Y of schemes is a closed im-
mersion if there exists a sheaf of ideal I of OY such that f induces an
isomorphism X → V (I) of schemes.

Proposition 8.4. Affine morphisms and closed immersions are sta-
ble under base extension. That is, if we are given morphisms
f : X → S and g : T → S of schemes and

(1) if f is an affine morphism, then fT : XT = X ×S T → T (“pro-
jection on the second variable”) is also an affine morphism.

(2) if f is a closed immersion, then fT : XT → T is also a closed
immersion.

Proof. (1): We may assume X = Spec(A). Then we may verify
immediately that XT = Spec(g∗A). This argument also proves (2). �

9. differential calculus of schemes

We refer to [3].

9.1. separated morphisms. The definition of a separated morphism
resembles the definition of a Hausdorff space.

Definition 9.1. A morphism f : X → S of schemes is separated
if the diagonal

∆X ⊂ X ×S X

(That means, the image of the diagonal map X → X×SX) is closed in
X×SX. In other words, f is separated if and only if there exists an ideal
sheaf I∆ of X ×S X such that f induces an isomorphism X ∼= V (I∆)
of schemes.
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Lemma 9.2. A morphism Spec(B) → Spec(A) of affine schemes is
always separated. More generally, an affine morphism is always sepa-
rated.

Proof. Let I be the kernel of a ring homomorphism

B ⊗A B ∋ b1 ⊗ b2 7→ b1b2 ∈ B.

Then it is easy to see that I gives the defining equation of the diagonal
∆.

For the general affine morphism case, let X = Spec(A) be a scheme
which is affine over Y . Then we have X ×Y X = Spec(A ⊗OY

A). We
may then see the situation locally and reduce the problem to the first
case. �

Lemma 9.3. Separated morphism is stable under base extension.
That is, assume f : X → S be a separated morphism. Let g : T → S
be a morphism of schemes. Then fT : XT → T is separated.

Proof.

XT ×T XT
∼= (X ×S T ) ×T (T ×S X) ∼= (X ×S X) ×S T

The diagonal ∆X/T is isomorphic to ∆X/S ×S T , and is therefore closed.
�

Lemma 9.4. A composition of separated morphisms is again sepa-
rated. Namely, if f : X → Y g : Y → S are separated morphism of
schemes, then g ◦ f : X → S is also separated.

Proof. We first claim the following sublemma:

Sublemma 9.5. Under the assumption of the lemma above, we have

X ×Y X ∼= (X ×S X) ×(Y ×SY ) ∆Y/S

The proof of the sublemma above is given by showing that the right
hand side satisfies the same universal property as the left hand side.

Now, let us prove the lemma. Since Y is separated over S, we have
a closed immersion

∆Y/S →֒ Y ×S Y.

By taking a base extension, we obtain a closed immersion

(X ×S X) ×(Y ×SY ) ∆Y/S →֒ X ×S X.

X ×Y X ∼= (X ×S X) ×(Y ×SY ) ∆Y/S →֒ X ×S X

Then ∆X/S is identified with the composition of closed immersions

X ∼= ∆X/Y →֒ X ×Y X →֒ X ×S X

�



14 YOSHIFUMI TSUCHIMOTO

Proposition 9.6. Let p : X → S be a separated morphism of
schemes. Let q : Y → S be a morphism of schemes. Then any S-
morphism f : X → Y is separated.

Proof. Since X is separated over S,

X → ∆X/S →֒ X ×S X

is a closed immersion. Now ∆X/Y → X ×Y X may be identified with
a pullback of the morphism above

∆X/S ×(X×SX) (X ×Y X) → (X ×Y X)

�

9.2. Linear differential operators.

9.2.1. Jets. Let X be a separated scheme over S. That means, we are
given a separated morphism ϕ : X → S. Let I∆ be the defining ideal
sheaf of the diagonal ∆ in X ×S X. For any positive integer n, we

define ∆(n) to be the closed subscheme of X ×S X defined by I
(n+1)
∆ .

The sheaf Jn = p1∗O
(n+1)
∆ on X is called the sheaf of n-jets on X

relative to S. There is another description of this sheaf. Let

p
(n)
1 : ∆(n+1) → X, p

(n)
2 : ∆(n+1) → X

be restrictions of the projections p1, p2. Then we have

Jn = (p
(n)
1 )∗(p

(n)
2 )∗O.

For a local section f of OX , we define the jet (“the Taylor expansion”)
of f (of order n) by

Jet(f) = p1∗p
∗
2f

Example 9.7. Let A be any ring in which n! is invertible. Let x be
an indeterminate. We put

X = Spec(A[x]), S = Spec(A),

ϕ : X → S being the canonical projection.
Then we have X ×S X = Spec(A[x, x̄]). The sheaf of n-jets on X

relative to S is

A[x, x̄]/(x̄− x)n+1

Let us put h = x̄− x. Then for any p = p(x) ∈ A[x], we have

Jet(f) = f(x̄) =

n
∑

s=0

1

s!
f (s)(x)hs.
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When n! is not invertible in A, a similar formula is still valid. The
thing is that the operator 1/s!(d/dx)s is defined over Z.

(1/s!(d/dx)s).(

n
∑

t=0

atx
t) =

n
∑

t=s

at

(

t

s

)

xt−s

Like wise, for any quasi coherent sheaf F on X, we may define the
sheaf Jn(F) of n-jets of F on X relative to S as

Jn(F) = p1∗p
∗
2F.

For any local section f of F, we may define the n-jet of it in the same
way as above.

9.2.2. definition of linear differential operators. An importance of the
sheaves of jets is that they govern linear differential operators.

Definition 9.8. Let ϕ : X → S be a separated morphism of
schemes. Let F,G be quasi coherent sheaves on X. Then a linear
differential operator of n-th order from F to G on X relative to S is
a composition of an element of

HomOX
(Jn(F),G).

with the Taylor expansion.

9.2.3. local description of differential operators. Differential operators
are defined locally. Thus we may restrict ourselves to the affine case
and look them carefully by the language of algebras and modules.

Lemma 9.9. Let X = Spec(B) → Spec(A) = Y be a morphism of
affine scheme. Then X ×Y X = Spec(B ⊗A B). ∆X/Y corresponds to
an ideal IB/A of B ⊗A B generated by

{f ⊗ 1 − 1 ⊗ f ; f ∈ B}

Proof. In B ⊗A B/IB/A, every class [
∑

j fj ⊗ gj] of an element
∑

j fj ⊗ gj ∈ B ⊗A B is equal to

[
∑

j

fj ⊗ gj] =
∑

j

[fj ⊗ 1][1 ⊗ gj] =
∑

j

[1 ⊗ fj][1 ⊗ gj] = [1 ⊗
∑

j

fjgj ]

�

Lemma 9.10 (criterion for being a differential operator). Let X =
Spec(B) → Spec(A) = Y be an morphism of schemes. Let M,N be B-
modules. Then an n-th order differential operator P from F = OX⊗BM
to G = OX ⊗B N is identified with an A-linear homomorphism

Γ(P ) : M → N.



16 YOSHIFUMI TSUCHIMOTO

An A-linear homomorphism φ : M → N corresponds to an n-th order
differential operator if and only if for any elements f1, f2, . . . , fn, fn+1

of A and for any element m ∈M , a relation

(µN ◦ (idB ⊗ φ))((

n
∏

i=1

(fi ⊗ 1 − 1 ⊗ fi))m)

(=
∑

I⊂{1,2,3,...,n+1}

(−1)|I|f∁Iφ(f I))

= 0

holds.

�

Corollary 9.11. A first order differential operator P : OX → G on
a scheme X relative to S corresponds to an OS-module homomorphism
P : OX → G such that for any local section f, g ∈ OS , we have

P (fg) = fP (g) + gP (f)− P (1)fg.

�

Using the Lemma of criterion for being a differential operator, We
deduce the following useful lemma.

Lemma 9.12. Let X = Spec(B) → Spec(A) = Y be an morphism of
schemes. A-linear homomorphism φ : M → N corresponds to an n-th
order differential operator if and only if for any f ∈ B, the “commu-
tator”

[φ, f ] = φ(f•) − fφ(•)

corresponds to an n− 1-th order differential operator.

�

Corollary 9.13. A composition of an n-th order differential oper-
ator P : F → G and an m-th order differential operator Q : G → H is
a differential operator of (n +m)-th order.

Proof. We note that for any local regular function f , w

[QP, f ] = [Q, f ]P +Q[P, f ]

holds. Then we may easily verify the statement by using induction.
�

Definition 9.14. For any separable scheme X over S, we denote the
sheaf of n-th linear differential operators on X from a quasi coherent
sheaf F to a quasi coherent sheaf G relative to S by

Diffn
X/S(F,G).
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The inductive limit

DiffX/S(F,G) = lim
−→

n

Diffn
X/S(F,G)

is called the sheaf of linear differential operators on X relative to S.
We use the following abbreviational symbols.

Diffn
X/S(F) = DiffX/S(F,F)n, Diffn

X/S = Diffn
X/S(OX),

DiffX/S(F) = DiffX/S(F,F), DiffX/S = DiffX/S(OX).

Note that DiffX/S is a sheaf of algebras over X. It is an impor-
tant example of an object which is a “non-commutative algebras glued
together”.

9.3. The sheaf of differential 1-forms. Let X be a separated S-
scheme. For each n ∈ N, there exists a natural projection map.

πn : Jn+1 → Jn

Let us restrict ourselves to the case where n = 0. J0 is equal to OX

and π0 splits in a natural way.

π0 : J1 → OX (split)

which yields an decomposition

J1
∼= OX ⊕ Ω1

X/S

for a unique quasi coherent sheaf Ω1
X/S.

Definition 9.15. The sheaf Ω1
X/S is called the sheaf of 1-forms

on X relative to S.

9.3.1. derivations.

Lemma 9.16. For any separated scheme X over S, and for any quasi
coherent sheaf F on X, An inclusion

F ∼= Diff 0
X/S(OX ,F) → Diff 1

X/S(OX ,F)

Admits a section. Namely, “evaluation by 1.

F ∼= Diff 1
X/S(OX ,F)

eval1→ F

Definition 9.17. The kernel of the evaluation map in the lemma
above is called the sheaf of derivations on X relative to S. We denote
it by DerX/S(OX ,F).

It is easy to see that
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Lemma 9.18. DerX/S(OX ,F) is a quasi coherent sheaf on X. Its
section consists of OS-linear maps D : OX → F which satisfy

D(fg) = fD(g) + gD(f)

for any local regular functions f, g.

9.3.2. The sheaf of differential 1-forms as the universal derivation. Let
X be a separated S-scheme. We define derivative

d : OX → Ω1
X/S

as follows

OX
jet1
→ J1 → Ω1

X/S

Proposition 9.19. For any sheaf homomorphism ϕ : Ω1
X/S ,F),

f 7→ ϕ(df)

is a derivation from OX → F relative to S. This assignment yields a
isomorphism of OX-module

DerX/S(OX ,F) ∼= H om(Ω1
X/S ,F).

9.3.3. first properties of 1-forms.

Proposition 9.20. Let p : X → S and q : Y → S be separated
morphisms. Let f : X → Y be a separated morphism of schemes such
that q ◦ f = p. Then we have a following exact sequence.

f ∗Ω1
Y/S → Ω1

X/S → Ω1
X/Y → 0

Proof. Since the question is local on X, Y, S, we may assume that
these schemes are affine. Then the claim is deduced by the following
arguments (Corollary 9.22), and a Yoneda-type argument. �

Lemma 9.21. Let A,B,C be (unital commutative associative) rings.
Assume we are given homomorphisms A→ B → C of rings. Then for
any A-module M , we have an exact sequence

(∗M) 0 → DerA/B(A,M)
αM→ DerA/C(A,M)

βM→ DerB/C(B,M)

The sequence is natural in the sense that if we have another A-module
N and an A-module homomorphism ϕ : M → N , then we have a
commutative diagram.

0 −−−→ DerA/B(A,M)
αM−−−→ DerA/C(A,M)

βM−−−→ DerB/C(B,M)

◦ϕ





y

◦ϕ





y

◦ϕ





y

0 −−−→ DerA/B(A,N)
αN−−−→ DerA/C(A,N)

βN−−−→ DerB/C(B,N)
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Proof. Any A-derivation D : A → M over B may be regarded as
a derivation over C which we denote by αM (D).

Any A-derivation D : A → M over C defines by restriction a B-
derivation B → M over C which we denote by βM(D).

The rest is easy observation. �

With the help of universality of d, we obtain the following corollary.

Corollary 9.22. Let A,B,C be (unital commutative associative)
rings. Assume we are given homomorphisms A → B → C of rings.
Then for any A-module M , we have an exact sequence
(∗∗M)

0 → HomA(Ω1
B/A,M)

αM→ HomA(Ω1
A/C ,M)

βM→ HomA(A⊗B Ω1
B/C ,M)

It is natural in a sense similar to the Lemma above. �

Proposition 9.23 (A Yoneda type argument). Let A be a commu-
tative associative ring.

(1) Let M1,M2 be A-modules. Assume for each A-module M , we
are given a homomorphism

αM : HomA(M1,M) → HomA(M2,M).

We assume that the assignment M 7→ αM is natural. That
means, for any A-modules M,N and for any A-module homo-
morphism φ : M → N , we have the following commutative
diagram.

HomA(M1,M)
αM−−−→ HomA(M2,M)

φ◦





y

φ◦





y

HomA(M1, N)
αN−−−→ HomA(M2, N)

In other words, we have

φ ◦ αM(ψ) = αN (φ ◦ ψ)

for any ψ ∈ HomA(M1,M). Then α is “representable”. That
means, there exists a unique fα ∈ HomA(M2,M1) such that

αM(ψ) = ψ ◦ fα

holds for all ψ ∈ HomA(M1,M).
(2) Let M1,M2,M3 be A-modules. Assume for each A-module M ,

we are given homomorphisms

αM : HomA(M1,M) → HomA(M2,M),

βM : HomA(M2,M) → HomA(M3,M).
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We assume that the assignments α, β is natural. Assume
furthermore that for any A-module M , a sequence

(∗ ∗ ∗M) 0 → HomA(M1,M)
αM→ HomA(M2,M)

βM→ HomA(M3,M)

is always exact. Then the corresponding sequence

M3

fβ
→M2

fα
→M1 → 0

(which arises due to the claim above) is also exact.

Proof. (1) Put

fα = αM1
(idM1

).

Then for any ψ ∈ HomA(M1,M), we have

αM(ψ) = αM(ψ ◦ idM1
) = ψ ◦ αM1

(idM1
) = ψ ◦ fα.

(2) Since βM ◦αM = 0, we deduce that fα ◦ fβ = 0 using the unique-
ness of the homomorphism which represents β ◦ α.

For surjectivity of fα, we use the sequence (∗∗∗M) forM = M1/fα(M2).
For the exactness at the middle term, we use the sequence (∗ ∗ ∗M) for
M = M2/fβ(M3). We leave the detail as an easy exercise. �

10. Étale morphism

10.1. morphism of finite type.

Definition 10.1. Let X, Y be schemes, and let f : X → Y be a
morphism. We say that f is of finite type if there exists an open
cover {Ui} of Y by affine schemes and a finite open cover {Vij} of each
f−1(Ui) by affine schemes such that fij = f |Vij

is “a morphism of finite
type” for every i and j. That means, if we put

Γfij
: Ai = Γ(OUi

) → Γ(OVij
) = Bij

Then Bij is finitely generated algebra over Ai.

10.2. Unramified morphism.

Definition 10.2. A separated morphism φ : X → Y of finite type
is said to be unramified if Ω1

X/Y = 0.

Lemma 10.3. Let A be a B-algebra. Assume A is generated by
{xλ}λ∈Λ as an A-algebra. Then IA/B = Ker(A ⊗B A → A) is gen-
erated by

S = {xλ ⊗ 1 − 1 ⊗ xλ; λ ∈ Λ}.

as an ideal of A⊗B A.
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Proof. Let us denote by J the ideal of A ×B A generated by S.
Then we define a subset T of A as follows.

T = {x ∈ A; x⊗ 1 − 1 ⊗ x ∈ J}

Now we claim the following facts.

(1) T is closed under addition.
(2) T is stable under multiplication by any element of B.
(3) 1 ∈ T .
(4) xλ ∈ T (∀λ ∈ Λ).
(5) T is closed under multiplication.

The only (5) may require proof. For any elements t1, t2 ∈ T , we have

t1t2 ⊗ 1 − 1 ⊗ t1t2

=(t1 ⊗ 1)(t2 ⊗ 1 − 1 ⊗ t2) − (t1 ⊗ 1 − 1 ⊗ t1)(1 ⊗ t2) ∈ J.

So the subset T is a B-subalgebra of A containing the generators
{xλ} of A. Thus we have T = A.

�

Proposition 10.4. A separated morphism φ : X → Y of finite type
is unramified if and only if the diagonal map X ∼= ∆X/Y →֒ X ⊗Y X
is an open immersion.

Proof. Let us first prove the “if” part. Assume ∆X/Y is open. then
∆X/Y is a clopen (“closed and open”) subset of X ⊗Y X. Namely,

X ⊗Y X = (∆X/Y ) ∪ (∁∆X/Y )

is a decomposition of the scheme X ⊗Y X into two Zariski open set.
Thus we have

OX⊗Y X = I∆X/Y
⊕ I∁∆X/Y

.

We then note in particular that I∆X/Y
has a distinguished global section

(“the identity”) u defined by

u =

{

1 on ∆X/Y

0 on ∁∆X/Y .

Then we see that

I∆X/Y
= uI∆X/Y

⊂ I2
∆X/Y

.

So we have

Ω1
X/Y = I∆X/Y

/I2
∆X/Y

= 0

as required.
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Let us now prove the “only if” part. The question is local on X and
on Y . So we may assume that f is of the form

f : X = Spec(A) → Y = Spec(B)

where A is a finitely generated algebra over B. Let I = I∆X/Y
be the

ideal of definition of the diagonal. The previous Lemma tells us that I
is finitely generated over A⊗B A. By the assumption we have

I/I2 = 0.

Now we use the Nakayama’s lemma (theorem below) to find an element
c ∈ I such that

cx = x (∀x ∈ I).

Then it is easy to see that c is an idempotent and that I = c(A⊗B A)
is its range. �

10.2.1. NAK.

Theorem 10.5 (Nakayama’s lemma, or NAK). Let A be a commu-
tative ring. Let M be an A-module. We assume that M is finitely
generated (as a module) over A. That means, there exists a finite set
of elements {mi}

t
i=1 such that

M =

t
∑

i=1

Ami

holds. If an ideal I of A satisfies

IM = M (that is, M/IM = 0),

then there exists an element c ∈ I such that

cm = m (∀m ∈M)

holds. If furthermore I is contained in the nilradical of A, then we have
M = 0.

Proof. Since IM = M , there exists elements bil ∈ I such that

ai =

t
∑

l=1

bilal (1 ≤ i ≤ t)

holds. In a matrix notation, this may be rewritten as

v = Bv

with v =t (m1, . . . , mn), B = (bij) ∈ Mt(I). Using the unit matrix
1t ∈Mt(A) one may also write :

(1t − B)v = 0.
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Now let R be the adjugate matrix of 1t − B. In other words, it is a
matrix which satisfies

R(1t − B) = (1t − B)R = (det(1t − B))1t.

Then we have

det(1t −B) · v = R(1t −B)v = 0.

On the other hand, since 1t −B = 1t modulo I, we have det(1t −B) =
1 − c for some c ∈ I. This c clearly satisfies

v = cv.

�

Let us interpret the claim of the above theorem in terms of a sheaf
F = OX ⊗AM on X = Spec(A). M is assumed to be finitely generated
over A. Note that this in particular means that every fiber of F on a
K-valued point (for each field K) is finite dimensional K-vector space.
In other words, it is “a pretty little(=finite dimensional) vector spaces
in a row.”

The next assumption simply means that F restricted to V (I) is equal
to zero. So F sits somewhere other than V (I).

The claim of the theorem (NAK) is that one may choose a regular
function c which “distinguishes V (I) and “the support of F”. c is equal
to 0 on V (I) and is equal to 1 where F sits.

10.3. Étale morphism.

Definition 10.6. A separated morphism φ : X → Y of finite type
is said to be étale if it is flat and unramified.

10.4. Smooth morphism. For any non negative integer n and for
any scheme S, we put

An
S = Spec Z[x1, x2, . . . , xn] ×Spec Z S

and πS : An
S → S the standard projection.

A smooth scheme over S is a scheme which ”étale locally look like”
An

S.

Definition 10.7. A separated morphism φ : X → S of finite type
is smooth of relative dimension n if for any point x on X, there exists
an open neighborhood U of X and an ’etale morphism ψ : U → An

S

such that
φ = ψ ◦ πS

holds.

Let us close this section by quoting the following fundamental result.
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Theorem 10.8 (SGA1,Éxpose II,Corollary4.6). Let f : X → Y be
a morphism of smooth S-schemes. then f is étale at x ∈ X if and only
if f ∗(Ω1

Y/S) → Ω1
X/S is isomorphism at x.

11. appendix

11.1. exact sequence.

Definition 11.1. Let A be a ring. Then a sequence

M1
f1

→M2
f2

→M3

is exact if condition

Image(f1) = Ker(f2)

holds.

We also use the notion of exact sequences for sheaves on schemes.
It is also defined likewise. This could be summarized in the theory
of abelian categories. We postpone the precise argument to a near
future.
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