Dolbeault complex of non-commutative projective varieties.

Y.Tsuchimoto (Kochi Univ.)

October 20, 2015 13:30-14:30

.

Motivation

► To understand a symmetry of $H^{k,l} = H^l(X, \Omega^k)$

$$
H^{\overline{k},l}\cong H^{l,k}
$$

over fields of positive characteristics.

- \blacktriangleright Deligne Illusie theory: $\bar{\partial}$ "resolution" of Ω^k is quasi isomorphic to the Frobenius "pullback" (somehow) of $Ω^{k,l}$.
- \triangleright Cartier operators are in action.
- \triangleright To obtain a lot of examples of non commutative objects.

Weyl algebras, Clifford algebras

k: comutative field, char $k = p \gg 0$, char $k \neq 0$. *h, k, C*: variables which commute with other variables ...

Weyl algebras, Clifford algebras

k: comutative field, char $k = p \gg 0$, char $k \neq 0$. *h, k, C*: variables which commute with other variables Weyl algebra:

$$
\mathsf{Weyl}_{n+1}^{(h,C)} = \mathbb{k}[h, C, X_0, X_1, \dots, X_n, \bar{X}_0, \bar{X}_1, \dots, \bar{X}_n]
$$
\n
$$
\text{relation (CCR): } [\bar{X}_i, X_j] = hC\delta_{ij}.
$$

Clifford algebra

$$
\mathsf{Cliff}_{n+1}^{(h,C,k)} = \mathbb{k}[h, C, k, E_0, \dots, E_n, \bar{E}_0, \dots, \bar{E}_n]
$$

relation(CAR): $[\bar{E}_i, E_j]_+ = Chk\delta_{ij}$.

.

Weyl-Clifford algebras

$$
WC_{n+1}^{(h,C,k)} = Weyl_{n+1}^{(h,C)} \otimes_{\mathbb{k}[h,C]} Cliff_{n+1}^{(h,C,k)}
$$

= $\mathbb{k}[h, C, k, X_0, \dots, X_n, \bar{X}_0, \dots, \bar{X}_n, E_0, \dots, E_n, \bar{E}_0, \dots, \bar{E}_n]$

.

4 / 24

Existence of odd derivations *∂, ∂*¯:...

Weyl-Clifford algebras

$$
WC_{n+1}^{(h,C,k)} = Weyl_{n+1}^{(h,C)} \otimes_{\mathbb{k}[h,C]} Cliff_{n+1}^{(h,C,k)}
$$

= $\mathbb{k}[h, C, k, X_0, \dots, X_n, \bar{X}_0, \dots, \bar{X}_n, E_0, \dots, E_n, \bar{E}_0, \dots, \bar{E}_n]$

Existence of odd derivations *∂, ∂*¯:

$$
\partial : \begin{cases} X_i \mapsto E_i \\ \bar{X}_i \mapsto 0 \\ E_i \mapsto 0 \\ \bar{E}_i \mapsto k\bar{X}_i. \end{cases} \qquad \bar{\partial} : \begin{cases} X_i \mapsto 0 \\ \bar{X}_i \mapsto \bar{E}_i \\ E_i \mapsto -kX_i \\ \bar{E}_i \mapsto 0. \end{cases}
$$

 $E_i = \overline{\partial}X_i$, $\overline{E}_i = \overline{\partial}\overline{X}_i$.

I

$$
\mathsf{WC}_{n+1} \cong \underbrace{\mathsf{WC}_1 \otimes \mathsf{WC}_1 \otimes \cdots \otimes \mathsf{WC}_1}_{n+1}
$$

 \triangleright We regard WC (with $C = 1$) as a non-commutative version of the algebra of differential forms on A 2*n* .

$$
\mathsf{WC}_{n+1} \cong \underbrace{\mathsf{WC}_1 \otimes \mathsf{WC}_1 \otimes \cdots \otimes \mathsf{WC}_1}_{n+1}
$$

- \triangleright We regard WC (with $C = 1$) as a non-commutative version of the algebra of differential forms on A 2*n* .
- \triangleright The variable *C* is added to do "homogenization".

$$
\mathsf{WC}_{n+1} \cong \underbrace{\mathsf{WC}_1 \otimes \mathsf{WC}_1 \otimes \cdots \otimes \mathsf{WC}_1}_{n+1}
$$

- \triangleright We regard WC (with $C = 1$) as a non-commutative version of the algebra of differential forms on A 2*n* .
- \triangleright The variable C is added to do "homogenization".
- ▶ We would like to see if $X \leftrightarrow \overline{X}$ ($E \leftrightarrow \overline{E}$) behaves somewhat like "complex conjugates."

$$
\mathsf{WC}_{n+1} \cong \underbrace{\mathsf{WC}_1 \otimes \mathsf{WC}_1 \otimes \cdots \otimes \mathsf{WC}_1}_{n+1}
$$

- \triangleright We regard WC (with $C = 1$) as a non-commutative version of the algebra of differential forms on A 2*n* .
- \triangleright The variable C is added to do "homogenization".
- ▶ We would like to see if $X \leftrightarrow \overline{X}$ ($E \leftrightarrow \overline{E}$) behaves somewhat like "complex conjugates."
- **I** Logically by definition X and \overline{X} are independent variables.

Presence of *k*

$$
[\bar{E}_i, E_i]_+ = Chk
$$

$$
[\bar{\partial}, \partial]_+ f = -k \operatorname{sdeg}_{\mu}(f) f.
$$

sdeg*^µ* :

...

$$
X \mapsto 1, \quad E \mapsto 1, \quad \bar{X} \mapsto -1, \quad \bar{E} \mapsto -1.
$$

.

Presence of *k*

$$
[\bar{E}_i, E_i]_+ = Chk
$$

$$
[\bar{\partial}, \partial]_+ f = -k \operatorname{sdeg}_{\mu}(f) f.
$$

sdeg*^µ* :

$$
X \mapsto 1, \quad E \mapsto 1, \quad \bar{X} \mapsto -1, \quad \bar{E} \mapsto -1.
$$

...For a plain A 2*n* , *k* is not such a very good boy.

. 6 / 24

Super algebra structure of WC.

Before doing anything else, please keep in mind that we will use "super" notations. We define a signature of elements of WC:

 X_i, \bar{X}_i : even. E_i , \bar{E}_i :odd.

The symbol [*a, b*] will be used to mean the super commutator instead of usual commutator.

$$
[a,b]=ab-(-1)^{\hat{a}\cdot\hat{b}}ba
$$

.

7 / 24

 \hat{a} , \hat{b} : signature of a , b .

*WC*¹ (revisited)

$$
WC_1 = \mathbb{K}[h, k, C, X, \bar{X}, E, \bar{E}]
$$

$$
[\bar{X}, X] = \bar{X}X - X\bar{X} = Ch
$$

$$
[\bar{E}, E] = \bar{E}E + E\bar{E} = Chk
$$

$$
E^2 = 0, \bar{E}^2 = 0
$$
"X-variables" (X, \bar{X}) and "E-variables" (E, \bar{E}) commute:
$$
[X, E] = 0, [X, \bar{E}] = 0, [\bar{X}, E] = 0, [\bar{X}, \bar{E}] = 0.
$$

. 8 / 24

*WC*₁ with the descritpion you would prefer

Let us denote
$$
d = \partial + \overline{\partial}
$$
: $E = dX$, $\overline{E} = d\overline{X}$.

$$
WC_1 = \mathbb{k}[h, k, C, X, \overline{X}, dX, d\overline{X}]
$$

$$
[\overline{X}, X] = \overline{X}X - X\overline{X} = Ch
$$

$$
[\overline{d}X, dX] = Chk
$$

$$
(dX)^2 = 0, (d\overline{X})^2 = 0.
$$

"*X*-variables" (X, \overline{X}) and "*d*•-variables" (dX, \overline{dX}) commute. *∂*, *∂*¯ are computed in the same way as usual except:

$$
\partial(d\bar{X})=-kX,\quad \bar{\partial}(dX)=kX.
$$

. 9 / 24

Shadow

- \triangleright The Weyl algebra is a simple algebra when the base field k is of characteristic zero.
- \triangleright When char(\mathbb{K}) \neq 0 (as we always assume in this talk,) the Weyl algebra has a fairly large center.
- \blacktriangleright Weyl $_{n+1}^{(h,C)}$ corresponds to a coherent sheaf of algebras on $\mathbb{A}^{n+1}_{\mathbb{k}[h,C]}$.
- \triangleright We may obtain results over fields of characteristic 0 by using "ultra filters" on $Spm(\mathbb{Z})$.

.

To do:

- 1. Construct a sheaf A of super algebras on $\mathbb{P}^n \times \mathbb{P}^n$.
- 2. See that A is a double complex with respect to ∂ , $\overline{\partial}$.
- 3. $(A, \overline{\partial})$ is quasi ismorphic to another sheaf of algebras on $\mathbb{P}^n \times \mathbb{P}^n$.
- 4. Computation of cohomollogy.
- 5. Mimic Deligne-Illusie theory.
- 6. Comarizon to the commutative theory by taking the limit $h \rightarrow 0$.

.

11 / 24

7. Watch *∂ ↔ ∂*¯ symmetry.

 A^{pre} (constraint with $\mu_R=0$)

$$
WC = \mathbb{k}[h, C, k, X_0, \ldots, X_n, \overline{X}_0, \ldots, \overline{X}_n, E_0, \ldots, E_n, \overline{E}_0, \ldots, \overline{E}_n]
$$

$$
\mu_R = \sum_i (X_i \bar{X}_i k + E_i \bar{E}_i) - RkC
$$

$$
[\mu_R, f] = \text{sdeg}_{\mu}(f)f.
$$

$$
(\text{WC})_0 \stackrel{\text{def}}{=} \{x \in \text{WC}; \text{sdeg}_{\mu}(x) = 0\}
$$

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

 A^{pre} (constraint with $\mu_R=0$)

$$
WC = \mathbb{k}[h, C, k, X_0, \ldots, X_n, \overline{X}_0, \ldots, \overline{X}_n, E_0, \ldots, E_n, \overline{E}_0, \ldots, \overline{E}_n]
$$

$$
\mu_R = \sum_i (X_i \bar{X}_i k + E_i \bar{E}_i) - RkC
$$

$$
[\mu_R, f] = \text{sdeg}_{\mu}(f)f.
$$

$$
(\text{WC})_0 \stackrel{\text{def}}{=} \{x \in \text{WC}; \text{sdeg}_{\mu}(x) = 0\}
$$

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

 A^{pre} (constraint with $\mu_R=0$)

$$
WC = \mathbb{k}[h, C, k, X_0, \ldots, X_n, \overline{X}_0, \ldots, \overline{X}_n, E_0, \ldots, E_n, \overline{E}_0, \ldots, \overline{E}_n]
$$

$$
\mu_R = \sum_i (X_i \bar{X}_i k + E_i \bar{E}_i) - RkC
$$

$$
[\mu_R, f] = \text{sdeg}_{\mu}(f)f.
$$

$$
(\text{WC})_0 \stackrel{\text{def}}{=} \{x \in \text{WC}; \text{sdeg}_{\mu}(x) = 0\}
$$

$$
A^{\text{pre}} = (\text{WC})_0 / (\mu_R)
$$

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

12 / 24

Marsden-Weinstein quotient.

Throw away torsions

=*⇒*

$$
A = \text{Image}(A^{\text{pre}} \to A^{\text{pre}}[\frac{1}{k}]).
$$

$$
\mu_R = \sum_i (X_i \bar{X}_i k + E_i \bar{E}_i) - RkC = 0 \quad \text{in } A
$$

$$
m:=-\sum_i X_i\bar{X}_i=\frac{1}{k}\sum E_i\bar{E}_i \quad \text{in } A
$$

 \implies *m*(*m − Ch*)(*m* − 2*Ch*) \cdots (*m* − (*n* + 1)*Ch*) = 0 in *A*. $($ Note that $(E_i \overline{E}_i)^2 = khE_i\overline{E}_i$ holds.)

(Secretly changed the sign of *m* compared to my november talk at MSJ.) (Oct.29: Secretly corrected the equation. We forgot to put some *C*'s here.)

Dolbeault complex

)

- 1. We define the sheaf of super algebras $\mathcal A$ on $\mathbb P^n\times \mathbb P^n$ as the sheaf corresponding to *A*.
- 2. A is a double complex with respect to ∂ , $\bar{\partial}$. (In particular,

$$
[\bar\partial,\partial]_+ (= -k\,\hbox{sdeg}_\mu) = 0.
$$

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$. The set of Ξ is a set of Ξ is a set of Ξ

Dolbeault complex

- 1. We define the sheaf of super algebras $\mathcal A$ on $\mathbb P^n\times \mathbb P^n$ as the sheaf corresponding to *A*.
- 2. A is a double complex with respect to ∂ , $\overline{\partial}$. (In particular,

$$
[\bar\partial,\partial]_+ (= -k\,\mathrm{sdeg}_\mu) = 0.
$$

) Let us call it the **Dolbeault complex.**

Dolbeault complex

- 1. We define the sheaf of super algebras $\mathcal A$ on $\mathbb P^n\times \mathbb P^n$ as the sheaf corresponding to *A*.
- 2. A is a double complex with respect to ∂ , $\bar{\partial}$. (In particular,

$$
[\bar\partial,\partial]_+ (= -k\,\mathrm{sdeg}_\mu) = 0.
$$

.

14 / 24

) Let us call it the **Dolbeault complex.**

3. We need to find a sheaf quasi isomorphic to $(A, \overline{\partial})$.

Projective coordinate ring where $X_0 \neq 0$

$$
A^{\heartsuit} = A_{\{X_0 \neq 0\}} \\
= \mathbb{k}[h, k, C, x_1, \ldots, x_n, x'_1, \ldots, x'_n, e_0, \ldots, e_n, e'_0, \ldots, e'_n, m]
$$

$$
x_i = X_i X_0^{-1}, x'_i = X_0 \bar{X}_i, e_i = E_i X_0^{-1}, e'_i = X_0 \bar{E}_i
$$

$$
m = \frac{1}{k} (\sum_{i=0}^n e_i e'_i).
$$

$$
x_0 = 1, x'_0 = -\sum_{i=1}^n x_i x'_i - m
$$

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$ 15 / 24

Ring structure of the projective coordinate ring where $X_0 \neq 0$

$$
A^{\heartsuit}
$$

= $\mathbb{k}[h, k, C, x_1, \ldots, x_n, x'_1, \ldots, x'_n, e_0, \ldots, e_n, e'_0, \ldots, e'_n, m]$

$$
[x'_{i}x_{j}] = hC\delta_{ij}
$$

\n
$$
[x_{i}, x_{j}] = 0, [x'_{i}, x'_{j}] = 0
$$

\n
$$
[e'_{i}, e_{i}] (= [e'_{i}, e_{i}]_{+}) = Chk\delta_{ij}
$$

\n
$$
e_{i}^{2} = 0, (e'_{i})^{2} = 0
$$

\n
$$
m = \frac{1}{k} \sum_{i=0}^{n} e_{i}e'_{i} \qquad (\text{in } A^{\heartsuit}[\frac{1}{k}])
$$

. 16 / 24

- ▶ In short, A^{\heartsuit} is an algebra by adjoining e_0, e'_0, m to the Weyl-Clifford algebra WC*ⁿ*
- \triangleright Essentially (probably up to "Morita equivalence"), we come back to our original WC*n*.
- ^I Note our covering *∪j{X^j ̸*= 0*}* of (non-commutative) P *ⁿ ×* P *n* is only good for *∂*¯-action and is no good for *∂*-action.

.

freeness of \mathcal{A}^\heartsuit

 \blacktriangleright

 \blacktriangleright To concentrate on x, x', e, e' -variables, we denote

$$
\Bbbk_3=\Bbbk[\hbar,C,k]
$$

$$
\mathcal{A}^{\heartsuit} \cong \Bbbk_3[x,x'] \otimes_{\Bbbk_3} \Bbbk_3[e,e',m]
$$

 \blacktriangleright $\mathbb{R}_3[e, e', m]$ is a free finite module over \mathbb{R}_3

It follows that A^\heartsuit corresponds to a finite free \heartsuit module over $\mathbb{A}^n \times \mathbb{P}^n$

Freeness of $M = \mathbb{k}_3[e, e', m]$ (normal ordering)

(This slide is for the completeness sake only.)

 \triangleright By using suitable commutation relations,

$$
M = \sum k_3 e^I m^{[I]} (e^{\prime})^J
$$

=
$$
\sum k_3 e^I \frac{I!}{k^I} \sum_{|K|=I} e^K (e^{\prime})^K (e^{\prime})^J
$$

The last module is isomorphic to a submodule M_1 of the exterior algebra

$$
\Bbbk_3[\frac{1}{k}](\wedge(\oplus_{i=0}^n\mathcal{K}\mathsf{e}_i))\otimes(\wedge(\oplus_{i=0}^n\mathcal{K}\mathsf{e}_i'))
$$

PID, we see that M_0 is free. We may thus see that M is free. $\overline{}$ *M*₁ is of the form $\mathbb{K}[h, k, C] \otimes_{\mathbb{K}[k]} M_0$ for some torsion free $\mathbb{k}[k]$ -module M_0 . By using a general theory of modules over

Local quasi isomorphism

Theorem *A ♡ is quasi isomorphic to the following graded super subalgebra as a graded ∂*¯*-complex.*

$$
\begin{aligned} \n& [h, k, C, x_1, \ldots, x_n, \beta_1, \ldots, \beta_n, \\ \n& (x'_1)^p, \ldots, (x'_n)^p, (x'_1)^{p-1} e'_1, \ldots, (x'_n)^{p-1} e'_n, \\ \n& \in -RCe_0 \n\end{aligned}
$$

where

$$
\beta_i = e_i - x_i e_0 \qquad (i = 1, 2, \dots, n)
$$

$$
\epsilon = \sum_{i=0}^n x'_i e_i,
$$

. 20 / 24

explanation of variables(1)

$$
\begin{aligned} \n& [h, k, C, \frac{x_1, \ldots, x_n, \beta_1, \ldots, \beta_n,}{(x'_1)^p, \ldots, (x'_n)^p, (x'_1)^{p-1} e'_1, \ldots, (x'_n)^{p-1} e'_n, \\ \n& \in -RCe_0 \n\end{aligned}
$$

$$
\beta_i = e_i - x_i e_0 = d(X_i/X_0)
$$

One can think of $\mathbb{k}[h, k, C, x_1, \ldots, x_n, \beta_1, \ldots, \beta_n]$ as the ring of differentiable forms of (an affine piece of) \mathbb{P}^n .

explanation of variables(2)

$$
\begin{aligned} \n& [h, k, C, x_1, \dots, x_n, \beta_1, \dots, \beta_n, \\
& \frac{(x'_1)^p, \dots, (x'_n)^p, (x'_1)^{p-1} e'_1, \dots, (x'_n)^{p-1} e'_n, \\
& \epsilon - R C e_0 \n\end{aligned}
$$

One can think of

$$
\mathbb{k}[h, k, C, (x_1')^p, \ldots, (x_n')^p, (x_1')^{p-1}e_1', \ldots, (x_n')^{p-1}e_n']
$$

as the ring of differentiable forms of (an affine piece of) $\mathbb{P}^{n}{}'$ twisted by Frob. Let us denote it by $\Omega_{\text{sparse}, P^n}$.

Conclusion:

There exists a $\mathcal{O}_{\mathbb{P}^n}$ -algebra $\mathcal B$ on \mathbb{P}^n such that

- 1. B is an $\Omega_{\mathbb{P}^n}^{\bullet}$ -algebra.
- 2. B is free of rank two as an $\Omega_{\mathbb{P}^n}^{\bullet}$ -module.
- $(\mathcal{A}, \bar{\partial})$ is quasi-isomorphic to $(\mathfrak{B} \boxtimes \Omega_{\text{sparse}, \mathbb{P}^n}, 0).$ 4.

$$
\mathbb{R}\pi_{2*}\mathcal{A}\cong\mathcal{B}\boxtimes\bigoplus_{j}\mathbb{R}\mathsf{\Gamma}(\mathbb{P}^n,\Omega^j)
$$

 \overline{A} . \overline{B} . \overline{B} . \overline{A} . \overline{B} . \overline{A} . \overline{B} . \overline{B}

what about varieties:

V \subset \mathbb{P}^n : algebraic variety \implies One can consider $A/(I_V^p + \bar{I}_V^p)$ *V*). This suggests some type of symmetry in cohomologies.